Supplementary information : Elucidation of photovoltage origin and charge transport in Cu 2 O heterojunctions for solar energy conversion

a Institute of Aurel Stodola, Faculty of Electrical Engineering and Information Technology, University of Zilina, kpt. Nalepku 1390, 03101 Liptovsky Mikulas, Slovakia. Tel: +421-41-513-1484; E-mail: peter.cendula@fel.uniza.sk b Institute of Computational Physics, Zurich University of Applied Sciences (ZHAW), Wildbachstrasse 21, 8401 Winterthur, Switzerland. c Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISICLPI, Station 6, 1015 Lausanne, Switzerland. d Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany. e Institute of Photoelectronic Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350 China.

[1]  Anders Hagfeldt,et al.  Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices , 2018, Nature Catalysis.

[2]  Leonid Chernyak,et al.  Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length , 2018 .

[3]  W. Jaegermann,et al.  Band Alignment Engineering at Cu2O/ZnO Heterointerfaces. , 2016, ACS applied materials & interfaces.

[4]  T. Unold,et al.  Oxygen deficiency and Sn doping of amorphous Ga2O3 , 2016 .

[5]  M. Grätzel,et al.  Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting , 2015 .

[6]  S. Miyajima,et al.  Device simulation of cuprous oxide heterojunction solar cells , 2015 .

[7]  Adam C. Nielander,et al.  Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation , 2015 .

[8]  T. Minemoto,et al.  Theoretical analysis on effect of band offsets in perovskite solar cells , 2015 .

[9]  R. Gordon,et al.  Band offsets of n-type electron-selective contacts on cuprous oxide (Cu2O) for photovoltaics , 2014 .

[10]  Arnold J. Forman,et al.  Flat-Band Potential Techniques , 2013 .

[11]  T. Minemoto,et al.  Buffer-less Cu(In,Ga)Se2 solar cells by band offset control using novel transparent electrode , 2013 .

[12]  Jan C. Brauer,et al.  Synthesis and Characterization of High-Photoactivity Electrodeposited Cu2O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy , 2012 .

[13]  P. Scardi,et al.  Absorption coefficient of bulk and thin film Cu2O , 2011 .

[14]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[15]  H. Morkoç,et al.  Properties of isotype n-ZnO/n-GaN heterostructures studied by I–V–T and electron beam induced current methods , 2008 .

[16]  Roberto Orlando,et al.  First-principles study of the structural, electronic, and optical properties of Ga 2 O 3 in its monoclinic and hexagonal phases , 2006 .

[17]  Wyatt K. Metzger,et al.  Grain-boundary recombination in Cu(In,Ga)Se2 solar cells , 2005 .

[18]  M. Inaba,et al.  Structural and Electrical Characterizations of Electrodeposited p‐Type Semiconductor Cu2O Films. , 2005 .

[19]  S. Ishizuka,et al.  Nitrogen Doping into Cu2O Thin Films Deposited by Reactive Radio-Frequency Magnetron Sputtering , 2001 .

[20]  D. Fitzmaurice,et al.  Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film , 1996 .

[21]  A. Ghosh,et al.  Transition-metal dopants for extending the response of titanate photoelectrolysis anodes , 1979 .

[22]  J. Woods,et al.  Some electrical properties of the semiconductor βGa2O3 , 1966 .