Algebraic Interplay between Renormalization and Monodromy

We investigate combinatorial and algebraic aspects of the interplay between renormalization and monodromies for Feynman amplitudes. We clarify how extraction of subgraphs from a Feynman graph interacts with putting edges onshell or with contracting them to obtain reduced graphs. Graph by graph this leads to a study of cointeracting bialgebras. One bialgebra comes from extraction of subgraphs and hence is needed for renormalization. The other bialgebra is an incidence bialgebra for edges put either onor offshell. It is hence related to the monodromies of the multivalued function to which a renormalized graph evaluates. Summing over infinite series of graphs, consequences for Green functions are derived using combinatorial Dyson–Schwinger equations.

[1]  M. Kassabov,et al.  Assembling homology classes in automorphism groups of free groups , 2015, 1501.02351.

[2]  A. Zvonkin,et al.  Graphs on Surfaces and Their Applications , 2003 .

[3]  M. Borinsky Tropical Monte Carlo quadrature for Feynman integrals , 2020, 2008.12310.

[4]  Alain Connes,et al.  Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 2000 .

[5]  F. Brown,et al.  Angles, Scales and Parametric Renormalization , 2011, 1112.1180.

[6]  R. Kaufmann,et al.  Three Hopf algebras from number theory, physics & topology, and their common background II: general categorical formulation , 2020, 2001.08722.

[7]  D. Kreimer Anatomy of a gauge theory , 2005, hep-th/0509135.

[8]  Michael Borinsky,et al.  Feynman graph generation and calculations in the Hopf algebra of Feynman graphs , 2014, Comput. Phys. Commun..

[9]  T. Binoth,et al.  Numerical evaluation of multi-loop integrals by sector decomposition , 2004 .

[10]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[11]  F. Brown Feynman amplitudes, coaction principle, and cosmic Galois group , 2017 .

[12]  K. Vogtmann,et al.  Moduli of graphs and automorphisms of free groups , 1986 .

[13]  Loic Foissy,et al.  CHROMATIC POLYNOMIALS AND BIALGEBRAS OF GRAPHS , 2016, International Electronic Journal of Algebra.

[14]  O. Steinmann Ueber den Zusammenhang zwischen den Wightmanfunktionen und den retardierten Kommutatoren , 1960 .

[15]  G. Grätzer General Lattice Theory , 1978 .

[17]  B. Ruijl,et al.  Local Unitarity: a representation of differential cross-sections that is locally free of infrared singularities at any order , 2020, Journal of High Energy Physics.

[19]  K. Yeats Rearranging Dyson-Schwinger Equations , 2011 .

[20]  Gudrun Heinrich,et al.  Sector Decomposition , 2008, 0803.4177.

[21]  D. Amati,et al.  Dispersion Relation Methods in Strong Interactions , 1962 .

[22]  D. Kreimer Multi-valued Feynman Graphs and Scattering Theory , 2018, Texts & Monographs in Symbolic Computation.

[23]  Karen Vogtmann,et al.  On the bordification of Outer space , 2017, J. Lond. Math. Soc..

[24]  T. Binoth,et al.  Numerical evaluation of phase space integrals by sector decomposition , 2004 .

[25]  L. Foissy Multigraded Dyson–Schwinger systems , 2015, Journal of Mathematical Physics.

[27]  Claudia Rella,et al.  An Introduction to Motivic Feynman Integrals , 2020, Symmetry, Integrability and Geometry: Methods and Applications.

[28]  M. Borinsky Renormalized asymptotic enumeration of Feynman diagrams , 2017, 1703.00840.

[29]  F. Brown Notes on Motivic Periods , 2015, 1512.06410.

[30]  A. Kolla Angles , 2020, Encyclopedic Dictionary of Archaeology.

[31]  C. Duhr,et al.  Diagrammatic Coaction of Two-Loop Feynman Integrals , 2019, Proceedings of 14th International Symposium on Radiative Corrections — PoS(RADCOR2019).

[32]  D. Kreimer,et al.  Hopf algebras in renormalization theory: Locality and Dyson-Schwinger equations from Hochschild cohomology , 2005, hep-th/0506190.

[33]  R. Kaufmann,et al.  Three Hopf algebras from number theory, physics & topology, and their common background I: operadic & simplicial aspects , 2016, Communications in Number Theory and Physics.

[34]  D. Kreimer,et al.  Feynman amplitudes and Landau singularities for 1-loop graphs , 2010, 1007.0338.

[35]  K. Vogtmann,et al.  The Euler characteristic of Out($F_n$) , 2019, Commentarii Mathematici Helvetici.

[36]  Li Jin-q,et al.  Hopf algebras , 2019, Graduate Studies in Mathematics.

[37]  Alain Connes,et al.  Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .

[38]  Joachim Kock,et al.  Incidence Hopf algebras , 2011 .

[39]  J. Gracey Eight dimensional QCD at one loop , 2017, 1712.02565.

[40]  Max E. Mühlbauer,et al.  Moduli spaces of colored graphs , 2018, 1809.09954.

[41]  Francis Brown,et al.  Invariant Differential Forms on Complexes of Graphs and Feynman Integrals , 2021, Symmetry, Integrability and Geometry: Methods and Applications.

[42]  Karen Yeats,et al.  Subdivergence-free gluings of trees , 2021, 2106.07494.

[43]  Alain Connes,et al.  Renormalization in quantum field theory and the Riemann-Hilbert problem , 1999 .

[44]  Benjamin C. Ward,et al.  Feynman Categories , 2013, Astérisque.

[45]  Dirk Kreimer,et al.  On the Hopf algebra structure of perturbative quantum field theories , 1997 .

[46]  K. Yeats,et al.  The QCD beta-function from global solutions to Dyson-Schwinger equations , 2009, 0906.1754.

[47]  Renormalization of Gauge Fields: A Hopf Algebra Approach , 2006, hep-th/0610137.

[48]  David Prinz Gauge Symmetries and Renormalization , 2019, Mathematical Physics, Analysis and Geometry.

[49]  M. Borinsky Graphs in perturbation theory , 2018, 1807.02046.

[50]  Dominique Manchon,et al.  Doubling bialgebras of finite topologies , 2021, Letters in Mathematical Physics.

[51]  F. Patras,et al.  Renormalization , 2021, Algebra and Applications.

[52]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[53]  D. Kreimer,et al.  Recursive relations in the core Hopf algebra , 2009, 0903.2849.

[54]  W. D. Suijlekom Renormalization of gauge fields using Hopf algebras , 2008, 0801.3170.

[55]  Ben Ruijl,et al.  Loop-Tree Duality for Multiloop Numerical Integration. , 2019, Physical review letters.

[56]  K. Yeats A Combinatorial Perspective on Quantum Field Theory , 2016 .

[57]  M. Peskin,et al.  An Introduction To Quantum Field Theory , 1995 .

[58]  Marko Berghoff Feynman amplitudes on moduli spaces of graphs , 2017, Annales de l’Institut Henri Poincaré D.

[59]  F. Patras,et al.  Operads of (noncrossing) partitions, interacting bialgebras, and moment-cumulant relations , 2019, 1907.01190.

[60]  Dirk Kreimer,et al.  Outer Space as a Combinatorial Backbone for Cutkosky Rules and Coactions , 2020, Texts & Monographs in Symbolic Computation.

[61]  R. Cutkosky Singularities and Discontinuities of Feynman Amplitudes , 1960 .

[62]  Paul-Hermann Balduf,et al.  Propagator-cancelling scalar fields , 2021, 2102.04315.

[63]  J. Gracey Renormalization of scalar field theories in rational spacetime dimensions , 2017, The European Physical Journal C.

[64]  D. Kreimer The core Hopf algebra , 2009, 0902.1223.

[65]  B. Ruijl,et al.  Numerical Loop-Tree Duality: contour deformation and subtraction , 2019, 1912.09291.

[66]  H. Kissler Hopf-algebraic Renormalization of QED in the linear covariant Gauge , 2016, 1602.07003.

[67]  Paul-Hermann Balduf Perturbation Theory of Transformed Quantum Fields , 2019, Mathematical Physics, Analysis and Geometry.

[68]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.