Pilot quantum error correction for global-scale quantum communications

Real global-scale quantum communications and quantum key distribution systems cannot be implemented by the current fiber and free-space links. These links have high attenuation, low polarization-preserving capability or extreme sensitivity to the environment. A potential solution to the problem is the space-earth quantum channels. These channels have no absorption since the signal states are propagated in empty space, however a small fraction of these channels is in the atmosphere, which causes slight depolarizing effect. Furthermore, the relative motion of the ground station and the satellite causes a rotation in the polarization of the quantum states. In the current approaches to compensate for these types of polarization errors, high computational costs and extra physical apparatuses are required. Here we introduce a novel approach which breaks with the traditional views of currently developed quantum-error correction schemes. The proposed solution can be applied to fix the polarization errors which are critical in space-earth quantum communication systems. The channel coding scheme provides capacity-achieving communication over slightly depolarizing space-earth channels.

[1]  Jaehyun Kim,et al.  Storing unitary operators in quantum states , 2001 .

[2]  C. King The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.

[3]  Mark Hillery,et al.  Universal Optimal Cloning of Qubits and Quantum Registers , 1998, QCQC.

[4]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[5]  Sandor Imre,et al.  Advanced Quantum Communications: An Engineering Approach , 2012 .

[6]  Dominic C. O'Brien,et al.  Wireless Myths, Realities, and Futures: From 3G/4G to Optical and Quantum Wireless , 2012, Proceedings of the IEEE.

[7]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[8]  Paolo Villoresi,et al.  Study of the Quantum Channel between Earth and Space for Satellite Quantum Communications , 2009, PSATS.

[9]  Chiara Macchiavello,et al.  Quantum entanglement and classical communication through a depolarizing channel , 1999, quant-ph/9903033.

[10]  Nilanjana Datta,et al.  ADDITIVITY FOR TRANSPOSE DEPOLARIZING CHANNELS , 2004 .

[11]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[12]  Sandor Imre,et al.  Classical Communication with Stimulated Emission over Zero-Capacity Optical Quantum Channels , 2012 .

[13]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[14]  D. Gottesman An Introduction to Quantum Error Correction , 2000, quant-ph/0004072.

[15]  Dmitri S. Pavlichin,et al.  Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. , 2009, Physical review letters.

[16]  Fernando G S L Brandão,et al.  When does noise increase the quantum capacity? , 2012, Physical review letters.

[17]  Dave Touchette,et al.  Trade-off capacities of the quantum Hadamard channels , 2010, ArXiv.

[18]  P. Villoresi,et al.  Influence of satellite motion on polarization qubits in a Space-Earth quantum communication link. , 2006, Optics Express.

[19]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[20]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  A. Zeilinger,et al.  Quantum teleportation using active feed-forward between two Canary Islands , 2012, 1205.3909.

[22]  H. Briegel,et al.  Entanglement purification and quantum error correction , 2007, 0705.4165.

[23]  P. Villoresi,et al.  Feasibility of satellite quantum key distribution , 2009, 0903.2160.

[24]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[25]  Grigori G. Amosov Strong superadditivity conjecture holds for the quantum depolarizing channel in any dimension , 2007 .

[26]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[27]  A. Acin,et al.  Optimal estimation of quantum dynamics , 2001 .

[28]  F. Tamburini,et al.  Space-to-ground quantum communication using an optical ground station: a feasibility study , 2004, SPIE Optics + Photonics.

[29]  Rolf Meyer,et al.  Commercial optical inter-satellite communication at high data rates , 2012 .

[30]  P. Villoresi,et al.  Experimental verification of the feasibility of a quantum channel between space and Earth , 2008, 0803.1871.

[31]  M. Nielsen,et al.  Information-theoretic approach to quantum error correction and reversible measurement , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  Sandor Imre,et al.  Quantum Polar Coding for Noisy Optical Quantum Channels , 2012 .

[33]  Michael D. Westmoreland,et al.  Optimal signal ensembles , 1999, quant-ph/9912122.

[34]  Michael D. Westmoreland,et al.  Relative entropy in quantum information theory , 2000, quant-ph/0004045.

[35]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.