The Mitochondrial Genome Impacts Respiration but Not Fermentation in Interspecific Saccharomyces Hybrids

In eukaryotes, mitochondrial DNA (mtDNA) has high rate of nucleotide substitution leading to different mitochondrial haplotypes called mitotypes. However, the impact of mitochondrial genetic variant on phenotypic variation has been poorly considered in microorganisms because mtDNA encodes very few genes compared to nuclear DNA, and also because mitochondrial inheritance is not uniparental. Here we propose original material to unravel mitotype impact on phenotype: we produced interspecific hybrids between S. cerevisiae and S. uvarum species, using fully homozygous diploid parental strains. For two different interspecific crosses involving different parental strains, we recovered 10 independent hybrids per cross, and allowed mtDNA fixation after around 80 generations. We developed PCR-based markers for the rapid discrimination of S. cerevisiae and S. uvarum mitochondrial DNA. For both crosses, we were able to isolate fully isogenic hybrids at the nuclear level, yet possessing either S. cerevisiae mtDNA (Sc-mtDNA) or S. uvarum mtDNA (Su-mtDNA). Under fermentative conditions, the mitotype has no phenotypic impact on fermentation kinetics and products, which was expected since mtDNA are not necessary for fermentative metabolism. Alternatively, under respiratory conditions, hybrids with Sc-mtDNA have higher population growth performance, associated with higher respiratory rate. Indeed, far from the hypothesis that mtDNA variation is neutral, our work shows that mitochondrial polymorphism can have a strong impact on fitness components and hence on the evolutionary fate of the yeast populations. We hypothesize that under fermentative conditions, hybrids may fix stochastically one or the other mt-DNA, while respiratory environments may increase the probability to fix Sc-mtDNA.

[1]  C. Giraud,et al.  Yeast proteome variations reveal different adaptive responses to grape must fermentation. , 2013, Molecular biology and evolution.

[2]  P. Blier,et al.  Mitochondrial haplotype divergences affect specific temperature sensitivity of mitochondrial respiration , 2013, Journal of Bioenergetics and Biomembranes.

[3]  B. Lang,et al.  Strikingly Bacteria-Like and Gene-Rich Mitochondrial Genomes throughout Jakobid Protists , 2013, Genome biology and evolution.

[4]  P. Sulo,et al.  A complete sequence of Saccharomyces paradoxus mitochondrial genome that restores the respiration in S. cerevisiae. , 2012, FEMS yeast research.

[5]  R. Tanguay,et al.  NATURALLY OCCURRING MITOCHONDRIAL DNA HAPLOTYPES EXHIBIT METABOLIC DIFFERENCES: INSIGHT INTO FUNCTIONAL PROPERTIES OF MITOCHONDRIA , 2012, Evolution; international journal of organic evolution.

[6]  R. Seymour,et al.  Selection for mitonuclear co-adaptation could favour the evolution of two sexes , 2012, Proceedings of the Royal Society B: Biological Sciences.

[7]  Angus H. Forgan,et al.  The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins. , 2012, FEMS yeast research.

[8]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[9]  M. Aigle,et al.  Population Size Drives Industrial Saccharomyces cerevisiae Alcoholic Fermentation and Is under Genetic Control , 2011, Applied and Environmental Microbiology.

[10]  L. Solieri Mitochondrial inheritance in budding yeasts: towards an integrated understanding. , 2010, Trends in microbiology.

[11]  R. Meadows Genetic Mismatches Between Nuclei and Mitochondria Make Yeast Hybrids Sterile , 2010, PLoS biology.

[12]  J. Leu,et al.  Multiple Molecular Mechanisms Cause Reproductive Isolation between Three Yeast Species , 2010, PLoS biology.

[13]  Richard G Melvin,et al.  Linking the mitochondrial genotype to the organismal phenotype , 2010, Molecular ecology.

[14]  D. Dubourdieu,et al.  Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach. , 2009, FEMS yeast research.

[15]  M. Aigle,et al.  Evidence for autotetraploidy associated with reproductive isolation in Saccharomyces cerevisiae: towards a new domesticated species , 2009, Journal of evolutionary biology.

[16]  Masahira Hattori,et al.  Genome Sequence of the Lager Brewing Yeast, an Interspecies Hybrid , 2009, DNA research : an international journal for rapid publication of reports on genes and genomes.

[17]  N. Dingemanse,et al.  Genetic modulation of energy metabolism in birds through mitochondrial function , 2009, Proceedings of the Royal Society B: Biological Sciences.

[18]  J. Montoya,et al.  Human mitochondrial variants influence on oxygen consumption. , 2009, Mitochondrion.

[19]  J. Leu,et al.  Incompatibility of Nuclear and Mitochondrial Genomes Causes Hybrid Sterility between Two Yeast Species , 2008, Cell.

[20]  E. Mardis,et al.  Transcriptome-Wide Identification of Novel Imprinted Genes in Neonatal Mouse Brain , 2008, PloS one.

[21]  J. Lindell,et al.  Evolutionary implications of non-neutral mitochondrial genetic variation. , 2008, Trends in ecology & evolution.

[22]  J. Pérez-Ortín,et al.  Mitochondrial inheritance and fermentative : oxidative balance in hybrids between Saccharomyces cerevisiae and Saccharomyces uvarum , 2008, Yeast.

[23]  Robert P. Davey,et al.  Population genomics of domestic and wild yeasts , 2008, Nature.

[24]  C. Óvilo,et al.  Mitochondrial genome polymorphisms associated with longissimus muscle composition in Iberian pigs. , 2008, Journal of animal science.

[25]  A. Pulvirenti,et al.  The inheritance of mtDNA in lager brewing strains. , 2008, FEMS yeast research.

[26]  R. Nauen,et al.  Mitochondrial heteroplasmy and the evolution of insecticide resistance: Non-Mendelian inheritance in action , 2008, Proceedings of the National Academy of Sciences.

[27]  M. Turelli,et al.  Accelerated Mitochondrial Evolution and “Darwin's Corollary”: Asymmetric Viability of Reciprocal F1 Hybrids in Centrarchid Fishes , 2008, Genetics.

[28]  R. Burton,et al.  Three divergent mitochondrial genomes from California populations of the copepod Tigriopus californicus. , 2007, Gene.

[29]  H. Kitagaki,et al.  Mitochondrial dynamics of yeast during sake brewing. , 2007, Journal of bioscience and bioengineering.

[30]  J. Cornuet,et al.  Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history , 2007, Molecular ecology.

[31]  J. Enríquez,et al.  Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants , 2006, Nature Genetics.

[32]  M. Rigoulet,et al.  Growth Yield Homeostasis in Respiring Yeast Is Due to a Strict Mitochondrial Content Adjustment* , 2006, Journal of Biological Chemistry.

[33]  D. Wallace,et al.  Differences of sperm motility in mitochondrial DNA haplogroup U sublineages. , 2006, Gene.

[34]  M. Aigle,et al.  Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. , 2006, FEMS yeast research.

[35]  D. Rand,et al.  Nuclear–Mitochondrial Epistasis and Drosophila Aging: Introgression of Drosophila simulans mtDNA Modifies Longevity in D. melanogaster Nuclear Backgrounds , 2006, Genetics.

[36]  Pierre Strehaiano,et al.  Influence of temperature and pH on Saccharomyces bayanus var. uvarum growth; impact of a wine yeast interspecific hybridization on these parameters. , 2005, International journal of food microbiology.

[37]  A. Pulvirenti,et al.  Limitations on the use of polymerase chain reaction--restriction fragment length polymorphism analysis of the rDNA NTS2 region for the taxonomic classification of the species Saccharomyces cerevisiae. , 2005, Canadian journal of microbiology.

[38]  K. Majamaa,et al.  Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes , 2005, European Journal of Human Genetics.

[39]  C. Zeyl,et al.  NUCLEAR‐MITOCHONDRIAL EPISTASIS FOR FITNESS IN SACCHAROMYCES CEREVISIAE , 2005, Evolution; international journal of organic evolution.

[40]  P. Fontanillas,et al.  Nonshivering thermogenesis capacity associated to mitochondrial DNA haplotypes and gender in the greater white‐toothed shrew, Crocidura russula , 2004, Molecular ecology.

[41]  J. Legras,et al.  Predominance of Saccharomyces uvarum during spontaneous alcoholic fermentation, for three consecutive years, in an Alsatian winery , 2004, Journal of applied microbiology.

[42]  K. Burgess,et al.  Maternal and paternal contributions to the fitness of hybrids between red and white mulberry (Morus, Moraceae). , 2004, American journal of botany.

[43]  M. Aigle,et al.  Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains. , 2004, FEMS yeast research.

[44]  W. Martin,et al.  Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes , 2004, Nature Reviews Genetics.

[45]  K. Adams,et al.  Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. , 2003, Molecular phylogenetics and evolution.

[46]  P. Dunn,et al.  Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie‐chickens , 2003, Molecular ecology.

[47]  Miklós Müller,et al.  Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation , 2003, Nature.

[48]  J. Piškur,et al.  The efficiency of functional mitochondrial replacement in Saccharomyces species has directional character. , 2003, FEMS yeast research.

[49]  D. Ussery,et al.  Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts. , 2003, Nucleic acids research.

[50]  A. C. James,et al.  Mitochondrial genotype affects fitness in Drosophila simulans. , 2003, Genetics.

[51]  V. Emelyanov Mitochondrial connection to the origin of the eukaryotic cell. , 2003, European journal of biochemistry.

[52]  J. Haines,et al.  Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. , 2003, American journal of human genetics.

[53]  D. Mccauley,et al.  Associations among cytoplasmic molecular markers, gender, and components of fitness in Silene vulgaris, a gynodioecious plant , 2003, Molecular ecology.

[54]  Marty C. Brandon,et al.  Natural selection shaped regional mtDNA variation in humans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Eric Rosenfeld,et al.  Non‐respiratory oxygen consumption pathways in anaerobically‐grown Saccharomyces cerevisiae: evidence and partial characterization , 2002, Yeast.

[56]  H. Y. Steensma,et al.  A microarray‐assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae , 2002, Yeast.

[57]  P. Tiffin,et al.  Asymmetrical crossing barriers in angiosperms , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[58]  J. Piškur,et al.  Diversity in organization and the origin of gene orders in the mitochondrial DNA molecules of the genus Saccharomyces. , 2000, Molecular biology and evolution.

[59]  J. Piškur,et al.  Functional co-operation between the nuclei of Saccharomyces cerevisiae and mitochondria from other yeast species , 2000, Current Genetics.

[60]  M. Aigle,et al.  Association of Saccharomyces bayanus var. uvarum with some French wines: genetic analysis of yeast populations. , 2000, Research in microbiology.

[61]  A. Querol,et al.  RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts , 2000, Antonie van Leeuwenhoek.

[62]  A. Yashin,et al.  Genes and longevity: lessons from studies of centenarians. , 2000, The journals of gerontology. Series A, Biological sciences and medical sciences.

[63]  M. Rigoulet,et al.  Growth of the yeast Saccharomyces cerevisiae on a non-fermentable substrate: control of energetic yield by the amount of mitochondria. , 2000, Biochimica et biophysica acta.

[64]  J. Piškur,et al.  Horizontal Transfer of Genetic Material amongSaccharomyces Yeasts , 1999, Journal of bacteriology.

[65]  S. Oliver,et al.  Ethanol production using nuclear petite yeast mutants , 1998, Applied Microbiology and Biotechnology.

[66]  J. Mccusker,et al.  Intergenic Transcribed Spacer PCR Ribotyping for Differentiation of Saccharomyces Species and Interspecific Hybrids , 1998, Journal of Clinical Microbiology.

[67]  R F Doolittle,et al.  Determining divergence times with a protein clock: update and reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[69]  L. Griensven,et al.  Mitochondrial Haplotype Influences Mycelial Growth of Agaricus bisporus Heterokaryons , 1997, Applied and environmental microbiology.

[70]  A. Murray,et al.  Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. , 1997, Molecular biology of the cell.

[71]  E. J. Lodolo,et al.  MITOCHONDRIAL RELEVANCE TO YEAST FERMENTATIVE PERFORMANCE: A REVIEW , 1996 .

[72]  M. Kreitman,et al.  Is mitochondrial DNA a strictly neutral marker? , 1995, Trends in ecology & evolution.

[73]  M. Rigoulet,et al.  Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells. , 1993, European journal of biochemistry.

[74]  C. Hollenberg,et al.  An efficient transformation procedure enabling long‐term storage of competent cells of various yeast genera , 1991, Yeast.

[75]  R. Schiestl,et al.  Applications of high efficiency lithium acetate transformation of intact yeast cells using single‐stranded nucleic acids as carrier , 1991, Yeast.

[76]  B. Blondin,et al.  Chromosomal DNA patterns and mitochondrial DNA polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae , 1990, Applied Microbiology and Biotechnology.

[77]  R. Schiestl,et al.  High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier , 1989, Current Genetics.

[78]  D. Dubourdieu,et al.  Identification des souches de levures isolées de vins par l'analyse de leur ADN mitochondrial , 1987 .

[79]  M. Rigoulet,et al.  Modification of flow-force relationships by external ATP in yeast mitochondria. , 1987, European journal of biochemistry.

[80]  M. Pagès,et al.  A simple and ranid method for preparing yeast chromosomes for Pulse Field Gel Electrophoresis , 1987 .

[81]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[82]  M. Rigoulet,et al.  Control of oxidative phosphorylations in yeast mitochondria. Role of the phosphate carrier , 1986 .

[83]  J. Sanford,et al.  Large yield differences between reciprocal families of Solanum tuberosum , 1982, Euphytica.

[84]  J. Sanford,et al.  Reciprocal differences in the photoperiod reaction of hybrid populations inSolanum tuberosum , 1979, American Potato Journal.

[85]  L. Sagan On the origin of mitosing cells , 1967, Journal of theoretical biology.

[86]  I. E. Wallin The Mitochondria Problem , 1923, The American Naturalist.

[87]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[88]  A. Pulvirenti,et al.  Sorting of mitochondrial DNA and proteins in the progeny of Saccharomyces interspecific hybrids , 2003 .

[89]  A. Querol,et al.  Phylogeny of the genus Kluyveromyces inferred from the mitochondrial cytochrome-c oxidase II gene. , 2000, International journal of systematic and evolutionary microbiology.

[90]  A. Pulvirenti,et al.  Inheritance of mitochondrial DNA in interspecific Saccharomyces hybrids , 2000 .

[91]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[92]  M. Aigle,et al.  Some molecular structures in the genome of lager brewing yeasts. , 1984 .

[93]  J. Broach,et al.  The Molecular biology of the yeast saccharomyces, life cycle and inheritance , 1981 .

[94]  B. Dujon Mitochondrial Genetics and Functions , 1981 .