Optimal scan strategy for mega-pixel and kilo-gray-level OLED-on-silicon microdisplay.

The digital pixel driving scheme makes the organic light-emitting diode (OLED) microdisplays more immune to the pixel luminance variations and simplifies the circuit architecture and design flow compared to the analog pixel driving scheme. Additionally, it is easily applied in full digital systems. However, the data bottleneck becomes a notable problem as the number of pixels and gray levels grow dramatically. This paper will discuss the digital driving ability to achieve kilogray-levels for megapixel displays. The optimal scan strategy is proposed for creating ultra high gray levels and increasing light efficiency and contrast ratio. Two correction schemes are discussed to improve the gray level linearity. A 1280×1024×3 OLED-on-silicon microdisplay, with 4096 gray levels, is designed based on the optimal scan strategy. The circuit driver is integrated in the silicon backplane chip in the 0.35 μm 3.3 V-6 V dual voltage one polysilicon layer, four metal layers (1P4M) complementary metal-oxide semiconductor (CMOS) process with custom top metal. The design aspects of the optimal scan controller are also discussed. The test results show the gray level linearity of the correction schemes for the optimal scan strategy is acceptable by the human eye.

[1]  Jerzy Kanicki,et al.  Improved a-Si:H TFT pixel electrode circuits for active-matrix organic light emitting displays , 2001 .

[2]  Feng Ran,et al.  Design on AM-OLED display control ASIC with high gray scale levels , 2011 .

[3]  Feng Ran,et al.  A novel OLED controller with fractal scan scheme , 2010 .

[4]  Jui-che Tsai,et al.  The Evolution of MEMS Displays , 2009, IEEE Transactions on Industrial Electronics.

[5]  Linas Svilainis,et al.  LED brightness control for video display application , 2008, Displays.

[6]  J. Kimmel,et al.  Display technologies for portable communication devices , 2002 .

[7]  Ping Chen,et al.  Highly efficient and low-cost top-emitting organic light-emitting diodes for monochromatic microdisplays , 2010 .

[8]  Ignacio Moreno,et al.  Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel. , 2009, Applied optics.

[9]  Gunther Notni,et al.  P‐176: HYPOLED ‐ High‐Performance OLED Microdisplays for Mobile Multimedia HMD and Projection Applications , 2010 .

[10]  Kent Robertson Van Horn,et al.  Design and application , 1967 .

[11]  Karl Leo,et al.  White top-emitting organic light-emitting diodes employing a heterostructure of down-conversion layers , 2011 .

[12]  D. K. Papakostas,et al.  An Improved Optical Feedback Pixel Driver Circuit , 2009, IEEE Transactions on Electron Devices.

[13]  Andreas Tünnermann,et al.  OLED‐based pico‐projection system , 2010 .

[14]  L.J. Hornbeck,et al.  Combining Digital Optical MEMS, CMOS and Algorithms for Unique Display Solutions , 2007, 2007 IEEE International Electron Devices Meeting.

[15]  W. E. Howard,et al.  Microdisplays based upon organic light-emitting diodes , 2001, IBM J. Res. Dev..

[16]  Yongtian Wang,et al.  Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. , 2009, Applied optics.

[17]  David Vettese Microdisplays: Liquid crystal on silicon , 2010 .

[18]  M. R. Douglass,et al.  A MEMS-based projection display , 1998, Proc. IEEE.

[19]  Hong Hua,et al.  Design of a polarized head-mounted projection display using ferroelectric liquid-crystal-on-silicon microdisplays. , 2008, Applied optics.

[20]  Chih-Ming Wang,et al.  High efficiency pocket-size projector with a compact projection lens and a light emitting diode-based light source system. , 2008, Applied optics.

[21]  John Hamer,et al.  Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[22]  Sung-Jin Lee,et al.  Image quality enhancement in AMOLED microdisplay for mobile projectors , 2011, IEEE Transactions on Consumer Electronics.

[23]  John E. Dean,et al.  Design aspects of a scrolling color LCoS display , 2002 .

[24]  Russell S. Draper,et al.  Active matrix organic light emitting diode (AMOLED)-XL performance and life test results , 2009, Defense + Commercial Sensing.

[25]  Robin Woodburn,et al.  A Full-Color QVGA Microdisplay using Light-Emitting-Polymer on CMOS , 2006, 2006 13th IEEE International Conference on Electronics, Circuits and Systems.

[26]  K. Johnson,et al.  Miniature liquid-crystal-on-silicon display assembly. , 1998, Optics letters.

[27]  J. Morizio,et al.  Novel frame buffer pixel circuits for liquid-crystal-on-silicon microdisplays , 2004, IEEE Journal of Solid-State Circuits.

[28]  Ian Underwood,et al.  Introduction to Microdisplays , 2006, Handbook of Visual Display Technology.

[29]  K. Johnson,et al.  Smart spatial light modulators using liquid crystals on silicon , 1993 .

[30]  Olivier Prache,et al.  Ultra-high resolution AMOLED , 2011, Defense + Commercial Sensing.

[31]  A. Nathan,et al.  Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic , 2004, IEEE Journal of Solid-State Circuits.

[32]  Boris M. Velichkovsky,et al.  Bi‐directional OLED microdisplay for interactive see‐through HMDs: Study toward integration of eye‐tracking and informational facilities , 2009 .

[33]  Haiqing Lin,et al.  An 852/spl times/600 pixel OLED-on-silicon color microdisplay chip using CMOS sub-threshold-voltage-scaling current driver , 2002 .

[34]  Russell A Chipman,et al.  Polarimetric characterization of liquid-crystal-on-silicon panels. , 2006, Applied optics.

[35]  Tae Jin Kim,et al.  A Current-Mode Display Driver IC Using Sample-and-Hold Scheme for QVGA Full-Color AMOLED Displays , 2006, IEEE Journal of Solid-State Circuits.