EOF analysis and modeling of GPS TEC climatology over North America

An empirical ionospheric model of the total electron content (TEC) over North America (20°–60°N, 40°–140°W) is constructed using the GPS TEC data collected by Massachusetts Institute of Technology (MIT) Haystack Observatory during the years 2001–2012. This model is based on an analysis of quiet time monthly averages using the empirical orthogonal function (EOF) decomposition technique, allowing for separation of spatial and temporal variations. The importance of different types of spatial‐temporal variations to the overall TEC variability can be well represented by the characteristics of EOF basis functions and associated principal components coefficients, with various modes. The mode one EOF decomposition constitutes 97.5% of the total variance and therefore represents the essential feature of North America spatial and diurnal variation of the TEC. The mode two EOF, as reported in an earlier study, reveals a large and significant symmetric longitudinal variation of the ionosphere, organized with respect to magnetic declination. The mode three EOF decomposition shows midlatitude latitudinal structure that varies with season in a manner very similar to the so‐called winter anomaly. Because of the quick convergence of EOF decomposition modes, the first four EOF modes are utilized for constructing a TEC empirical model. For each of the EOF modes, the temporal variations are expressed analytically in terms of local time, season, and solar activity, and the spatial variations by cubic‐spline functions. An analysis of accuracy and quality indicates that this regional empirical TEC model can reflect the majority of the quiet time monthly means, and represent characteristic temporal‐spatial variations in the North America.

[1]  Xuechuan Li,et al.  TEC differences for the mid-latitude ionosphere in both sides of the longitudes with zero declination , 2014 .

[2]  A. Coster,et al.  Ionospheric symmetry caused by geomagnetic declination over North America , 2013 .

[3]  David John Lary,et al.  Specifying the equatorial ionosphere using CINDI on C/NOFS, COSMIC, and data interpolating empirical orthogonal functions , 2013 .

[4]  Jing Liu,et al.  A case study of postmidnight enhancement in F‐layer electron density over Sanya of China , 2013 .

[5]  Lyubka Pashova,et al.  Global TEC maps based on GNSS data: 1. Empirical background TEC model , 2013 .

[6]  Wenbin Wang,et al.  Annual/semiannual variation of the ionosphere , 2013 .

[7]  Allan T. Weatherwax,et al.  Accuracy of GPS total electron content: GPS receiver bias temperature dependence , 2013 .

[8]  Min Wang,et al.  East‐west differences in F‐region electron density at midlatitude: Evidence from the Far East region , 2013 .

[9]  A. Coster,et al.  Magnetic declination and zonal wind effects on longitudinal differences of ionospheric electron density at midlatitudes , 2012 .

[10]  Feng Ding,et al.  Modeling the global ionospheric total electron content with empirical orthogonal function analysis , 2012 .

[11]  Aaron J. Ridley,et al.  A global model: Empirical orthogonal function analysis of total electron content 1999–2009 data , 2012 .

[12]  A. Coster,et al.  East‐West Coast differences in total electron content over the continental US , 2011 .

[13]  M. Lester,et al.  First observations of the midlatitude evening anomaly using Super Dual Auroral Radar Network (SuperDARN) radars , 2011 .

[14]  Qian Wu,et al.  The winter anomaly in the middle‐latitude F region during the solar minimum period observed by the Constellation Observing System for Meteorology, Ionosphere, and Climate , 2011 .

[15]  Lee-Anne McKinnell,et al.  TEC measurements and modelling over Southern Africa during magnetic storms; a comparative analysis , 2010 .

[16]  Shunrong Zhang,et al.  IPY observations of ionospheric yearly variations from high- to middle-latitude incoherent scatter radars , 2010 .

[17]  Chien-Hung Lin,et al.  Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT‐3/COSMIC , 2010 .

[18]  Zahra Bouya,et al.  Regional GPS-based ionospheric TEC model over Australia using Spherical Cap Harmonic Analysis , 2010 .

[19]  Y. Kuo,et al.  The summer evening anomaly and conjugate effects , 2010 .

[20]  Libo Liu,et al.  Climatology of the mean total electron content derived from GPS global ionospheric maps , 2009 .

[21]  S. Skone,et al.  Monitoring storm-enhanced density using IGS reference station data , 2009 .

[22]  S. Solomon,et al.  Seasonal variation of thermospheric density and composition , 2009 .

[23]  Ying-Hwa Kuo,et al.  Behavior of the F2 peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data , 2008 .

[24]  Orhan Arikan,et al.  Regional TEC mapping with Random Field Priors and Kriging , 2008 .

[25]  S. Solomon,et al.  Midlatitude nighttime enhancement in F region electron density from global COSMIC measurements under solar minimum winter condition , 2008 .

[26]  D. Bilitza,et al.  International Reference Ionosphere 2007: Improvements and new parameters , 2008 .

[27]  W. Wan,et al.  Modeling M(3000)F2 based on empirical orthogonal function analysis method , 2008 .

[28]  W. Wan,et al.  Modeling the global ionospheric TEC with statistical eigen mode analysis , 2008 .

[29]  Shunrong Zhang,et al.  Ionospheric climatology and variability from long-term and multiple incoherent scatter radar observations: Climatology in eastern American sector , 2007 .

[30]  Anthea J. Coster,et al.  Automated GPS processing for global total electron content data , 2006 .

[31]  Jaume Sanz,et al.  Improvement of global ionospheric VTEC maps by using kriging interpolation technique , 2005 .

[32]  Shoichiro Fukao,et al.  Ionospheric local model and climatology from long‐term databases of multiple incoherent scatter radars , 2005 .

[33]  N. M. Pavlova,et al.  Causes of the mid-latitude NmF2 winter anomaly at solar maximum , 2005 .

[34]  G. Lu,et al.  Optimal interpolation analysis of high-latitude ionospheric electrodynamics using empirical orthogonal functions: Estimation of dominant modes of variability and temporal scales of large-scale electric fields , 2005 .

[35]  N. M. Pavlova,et al.  Mechanism of the post-midnight winter night-time enhancements in NmF2 over Millstone Hill during 14-17 January 1986 , 2005 .

[36]  S. Schlüter,et al.  GPS ionospheric imaging of the north polar ionosphere on 30 October 2003 , 2005 .

[37]  Timothy Fuller-Rowell,et al.  US‐TEC: A new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real‐time GPS data , 2004 .

[38]  Philip J. Erickson,et al.  Stormtime observations of the flux of plasmaspheric ions to the dayside cusp/magnetopause , 2004 .

[39]  Cathryn N. Mitchell,et al.  A comparison of techniques for mapping total electron content over Europe using GPS signals , 2004 .

[40]  R. Schunk,et al.  Analysis of TEC data from the TOPEX/Poseidon mission , 2004 .

[41]  Daniel R. Marsh,et al.  An empirical model of nitric oxide in the lower thermosphere , 2003 .

[42]  Koji Matsumoto,et al.  Regional ionosphere map over Japanese Islands , 2002 .

[43]  M. Herraiz,et al.  Global morphology of night-time NmF2 enhancements , 2002 .

[44]  S. Kawamura,et al.  Annual and semiannual variations of the midlatitude ionosphere under low solar activity , 2002 .

[45]  Shunrong Zhang,et al.  Regional and local ionospheric models based on Millstone Hill incoherent scatter radar data , 2002 .

[46]  Takuya Tsugawa,et al.  A new technique for mapping of total electron content using GPS network in Japan , 2002 .

[47]  Tomoko Matsuo,et al.  Modes of high‐latitude electric field variability derived from DE‐2 measurements: Empirical Orthogonal Function (EOF) analysis , 2001 .

[48]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[49]  H. Rishbeth,et al.  Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion , 2000 .

[50]  S. Fukao,et al.  Annual variations of the ionosphere: A review based on MU radar observations , 2000 .

[51]  Xiaoqing Pi,et al.  Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data , 1999 .

[52]  Jaume Sanz,et al.  New approaches in global ionospheric determination using ground GPS data , 1999 .

[53]  William A. Feess,et al.  New and Improved - The Broadcast Interfrequency Biases , 1999 .

[54]  Henry Rishbeth,et al.  How the thermospheric circulation affects the ionospheric F2-layer , 1998 .

[55]  S. Fukao,et al.  Equinoctial asymmetries in the ionosphere and thermosphere observed by the MU radar , 1998 .

[56]  Anthony J. Mannucci,et al.  A global mapping technique for GPS‐derived ionospheric total electron content measurements , 1998 .

[57]  S. Quegan,et al.  Ionospheric F 2 layer seasonal and semiannual variations , 1996 .

[58]  G. Juchnikowski,et al.  Kriging method for instantaneous mapping at low and equatorial latitudes , 1996 .

[59]  Anthony J. Mannucci,et al.  Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers , 1995 .

[60]  G. J. Bailey,et al.  Nighttime enhancements in ionospheric electron content in the northern and southern hemispheres , 1994 .

[61]  Stewart Moses,et al.  Plasma waves at collisionless shocks in space: The observations of Frederick L. Scarf , 1991 .

[62]  N. I. Dvinskikh,et al.  Comparison of empirical models of ionospheric characteristics developed by means of different mapping methods , 1991 .

[63]  N. I. Dvinskikh,et al.  An adaptable regional empirical ionospheric model , 1991 .

[64]  E. Kendziorra,et al.  50-500 MeV observations of LMC supernova 1987A , 1990 .

[65]  W. Singer,et al.  Application of the expansion into empirical orthogonal functions to ionospheric characteristics , 1990 .

[66]  Discussion of a new method for mapping ionospheric characteristics , 1990 .

[67]  N. I. Dvinskikh Expansion of ionospheric characteristics fields in empirical orthogonal functions , 1988 .

[68]  P. Richards,et al.  Causes of the F region winter anomaly , 1980 .

[69]  Dieter Bilitza,et al.  International reference ionosphere , 1978 .

[70]  Marsha R. Torr,et al.  The seasonal behaviour of the F2-layer of the ionosphere , 1973 .

[71]  M. McElroy,et al.  The F2-layer at middle latitudes , 1970 .

[72]  G. Thomas THE EFFECT OF DIURNAL TEMPERATURE CHANGES ON THE F2-LAYER. II. TEMPERATURE DEPENDENT LOSS RATE. , 1968 .

[73]  J. V. Evans Cause of the midlatitude winter night increase in f 0 F 2 , 1965 .