Calculating unknown eigenvalues with a quantum algorithm

Researchers present a photonic demonstration of a full quantum algorithm without knowing the answer in advance. The unknown eigenvalues are truly calculated by the iterative phase estimation algorithm circuit. The demonstrated scheme is essential for practical applications of the phase estimation algorithm, including quantum simulations, quantum metrology and factoring.

[1]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[2]  Timothy C. Ralph,et al.  Efficient Toffoli gates using qudits , 2007 .

[3]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[4]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[5]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[8]  Jian-Wei Pan,et al.  Experimental demonstration of a hyper-entangled ten-qubit Schr\ , 2008, 0809.4277.

[9]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[10]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[11]  W. Marsden I and J , 2012 .

[12]  A. Politi,et al.  Manipulation of multiphoton entanglement in waveguide quantum circuits , 2009, 0911.1257.

[13]  Jiangfeng Du,et al.  NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. , 2010, Physical review letters.

[14]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[15]  M B Plenio,et al.  Efficient factorization with a single pure qubit and logN mixed qubits. , 2000, Physical review letters.

[16]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[17]  Göran Wendin,et al.  Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A two-qubit benchmark , 2006, quant-ph/0610214.

[18]  C. M. Natarajan,et al.  Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide , 2011, 1103.3769.

[19]  Alán Aspuru-Guzik,et al.  Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance , 2011, Scientific reports.

[20]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[21]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[22]  T. Ralph,et al.  Adding control to arbitrary unknown quantum operations , 2010, Nature communications.

[23]  C. Monroe,et al.  Onset of a quantum phase transition with a trapped ion quantum simulator. , 2011, Nature communications.

[24]  B. Lanyon,et al.  Quantum simulation of the Klein paradox with trapped ions. , 2010, Physical review letters.

[25]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[26]  Jian-Wei Pan,et al.  Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits. , 2007, Physical review letters.

[27]  B. Lanyon,et al.  Experimental demonstration of a compiled version of Shor's algorithm with quantum entanglement. , 2007, Physical review letters.

[28]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[29]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .