Computer-assisted proofs for semilinear elliptic boundary value problems
暂无分享,去创建一个
[1] K. Rektorys. Variational Methods in Mathematics, Science and Engineering , 1977 .
[2] L. Collatz. The numerical treatment of differential equations , 1961 .
[3] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[4] Konstantin Mischaikow,et al. Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..
[5] O. A. Ladyzhenskai︠a︡,et al. Linear and quasilinear elliptic equations , 1968 .
[6] M. Nakao. Solving Nonlinear Elliptic Problems with Result Verification Using an H -1 Type Residual Iteration , 1993 .
[7] M. Plum. Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems , 1995 .
[8] S. Zimmermann,et al. Variational Bounds to Eigenvalues of Self-Adjoint Eigenvalue Problems with Arbitrary Spectrum , 1995 .
[9] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[10] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[11] Christian Wieners,et al. Enclosure for the Biharmonic Equation , 2005, Algebraic and Numerical Algorithms and Computer-assisted Proofs.
[12] M. Plum,et al. A computer‐assisted instability proof for the Orr‐Sommerfeld equation with Blasius profile , 2004 .
[13] W. Walter. Differential and Integral Inequalities , 1970 .
[14] H. Behnke,et al. Inclusion of eigenvalues of general eigenvalue problems for matrices , 1988 .
[15] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[16] H. Bauer. Wahrscheinlichkeitstheorie und Grundzuge der Maßtheorie , 1968 .
[17] J. McWhirter. Variational Methods in Mathematics, Science and Engineering , 1978 .
[18] Michael Plum,et al. Explicit H2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems , 1992 .
[19] G. Corliss,et al. C-Xsc: A C++ Class Library for Extended Scientific Computing , 1993 .
[20] P. J. McKenna,et al. A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam , 2006 .
[21] N. Lehmann. Optimale Eigenwerteinschließungen , 1963 .
[22] Y. Choi,et al. A mountain pass method for the numerical solution of semilinear elliptic problems , 1993 .
[23] M. Nakao,et al. An approach to the numerical verification of solutions for nonlinear elliptic problems with local uniqueness , 1999 .
[24] Tosio Kato. Perturbation theory for linear operators , 1966 .
[25] Michael Plum,et al. Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof , 2000 .
[26] M. Nakao,et al. Numerical verifications for solutions to elliptic equations using residual iterations with a higher order finite element , 1995 .
[27] Michael Plum,et al. A computer‐assisted instability proof for the Orr‐Sommerfeld problem with Poiseuille flow , 2009 .
[28] Lothar Collatz,et al. Aufgaben monotoner Art , 1952 .
[29] M. Plum,et al. New solutions of the Gelfand problem , 2002 .