Revealing non-covalent interactions in solids: NCI plots revisited.

In this article, the NCI method [Johnson et al., J. Am. Chem. Soc., 2010, 132, 6498] for plotting and analysing non-covalent interactions (NCI) is extended to periodic (solid-state) electron densities and implemented in the critic program. The new code uses self-consistent electron densities from a variety of electronic structure methods (pseudopotentials/plane-wave, FP-LAPW, local orbitals, etc.), and it can also build the promolecular density from the crystal geometry alone. As an example of the new code, intermolecular interactions in several molecular crystals are presented and analyzed. The connection with QTAIM studies is established and a reinterpretation of the NCI domains is given regarding the current knowledge of the field. The connection between NCI domains and intermolecular vibrations is made apparent, as well as the ability of the method to reveal the locality of bonding.

[1]  A. Bondi van der Waals Volumes and Radii , 1964 .

[2]  Jerzy Cioslowski,et al.  Topological properties of electron density in search of steric interactions in molecules : electronic structure calculations on ortho-substituted biphenyls , 1992 .

[3]  O. Knop,et al.  C-H···H-C interactions in organoammonium tetraphenylborates: another look at dihydrogen bonds , 2003 .

[4]  A. Gavezzotti,et al.  Calculation of Intermolecular Interaction Energies by Direct Numerical Integration over Electron Densities. 2. An Improved Polarization Model and the Evaluation of Dispersion and Repulsion Energies , 2003 .

[5]  J. Dunitz,et al.  Molecular pair analysis: C-H...F interactions in the crystal structure of fluorobenzene? And related matters. , 2006, Chemistry.

[6]  K. Schwarz,et al.  Electronic structure calculations of solids using the WIEN2k package for material sciences , 2002 .

[7]  S. Grimme,et al.  When do interacting atoms form a chemical bond? Spectroscopic measurements and theoretical analyses of dideuteriophenanthrene. , 2009, Angewandte Chemie.

[8]  P. Metrangolo,et al.  Halogen bonding: a paradigm in supramolecular chemistry. , 2001, Chemistry.

[9]  C. Gatti Chemical bonding in crystals: new directions , 2005 .

[10]  A. Gavezzotti Non-conventional bonding between organic molecules. The ‘halogen bond’ in crystalline systems , 2008 .

[11]  Brendan Twamley,et al.  The nature of halogen...halogen synthons: crystallographic and theoretical studies. , 2006, Chemistry.

[12]  P. Smith,et al.  Refinement of the crystal structures of anhydrous α- and β-oxalic acids , 1974 .

[13]  P. Mori-Sánchez,et al.  Non-nuclear maxima of the electron density on alkaline metals , 2003 .

[14]  Gautam R Desiraju,et al.  Hydrogen bridges in crystal engineering: interactions without borders. , 2002, Accounts of chemical research.

[15]  D. Jayatilaka,et al.  Electron localization functions obtained from X-ray constrained Hartree-Fock wavefunctions for molecular crystals of ammonia, urea and alloxan. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[16]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[17]  R. Bader,et al.  A Bond Path: A Universal Indicator of Bonded Interactions , 1998 .

[18]  Jerzy Cioslowski,et al.  Weak bonds in the topological theory of atoms in molecules , 1991 .

[19]  R. Bader,et al.  Bond paths are not chemical bonds. , 2009, The journal of physical chemistry. A.

[20]  R. Bader,et al.  Properties of Atoms in Molecules:  Caged Atoms and the Ehrenfest Force. , 2005, Journal of chemical theory and computation.

[21]  Julia Contreras-García,et al.  Analysis of hydrogen-bond interaction potentials from the electron density: integration of noncovalent interaction regions. , 2011, The journal of physical chemistry. A.

[22]  Chérif F Matta,et al.  Hydrogen-hydrogen bonding: a stabilizing interaction in molecules and crystals. , 2003, Chemistry.

[23]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[24]  Ángel Martín Pendás,et al.  Critic: a new program for the topological analysis of solid-state electron densities , 2009, Comput. Phys. Commun..

[25]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[26]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[27]  Y. Abramov Secondary Interactions and Bond Critical Points in Ionic Crystals , 1997 .

[28]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[29]  H. Allcock,et al.  Phosphonitrilic compounds. XIII. Structure and properties of poly(difluorophosphazene) , 1972 .

[30]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[31]  Aurora Costales,et al.  Topological Analysis of Chemical Bonding in Cyclophosphazenes , 2001 .

[32]  P. F. Zhou,et al.  Topological definition of crystal structure: determination of the bonded interactions in solid molecular chlorine , 1995 .

[33]  Mark A. Spackman,et al.  Chemical properties from the promolecule , 1986 .

[34]  T. Berlin Binding Regions in Diatomic Molecules , 1951 .

[35]  James S. Chickos,et al.  Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2010 , 2010 .

[36]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  A. Gavezzotti,et al.  Molecular recognition in organic crystals: directed intermolecular bonds or nonlocalized bonding? , 2005, Angewandte Chemie.

[38]  Gautam R Desiraju,et al.  Crystal engineering: a holistic view. , 2007, Angewandte Chemie.

[39]  Á. M. Pendás,et al.  Bond paths as privileged exchange channels. , 2007, Chemistry.

[40]  Á. M. Pendás,et al.  Ions in crystals: The topology of the electron density in ionic materials. I. Fundamentals , 1997 .

[41]  A Kokalj,et al.  XCrySDen--a new program for displaying crystalline structures and electron densities. , 1999, Journal of molecular graphics & modelling.

[42]  Axel D. Becke,et al.  On the large‐gradient behavior of the density functional exchange energy , 1986 .

[43]  A. Haaland,et al.  Topological analysis of electron densities: is the presence of an atomic interaction line in an equilibrium geometry a sufficient condition for the existence of a chemical bond? , 2004, Chemistry.

[44]  E. Tiekink,et al.  Supramolecular architectures based on As(lone pair)···π(aryl) interactions. , 2011, Chemical communications.

[45]  P. Mori-Sánchez,et al.  A classification of covalent, ionic, and metallic solids based on the electron density. , 2002, Journal of the American Chemical Society.

[46]  S. Lebègue,et al.  Periodic projector augmented wave density functional calculations on the hexachlorobenzene crystal and comparison with the experimental multipolar charge density model. , 2011, The journal of physical chemistry. A.

[47]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[48]  J. Recio,et al.  Quantum mechanical cluster calculations of ionic materials : the ab initio perturbed ion (version 7) program , 1993 .

[49]  Miquel Solà,et al.  Hydrogen-hydrogen bonding in planar biphenyl, predicted by atoms-in-molecules theory, does not exist. , 2006, Chemistry.

[50]  P Coppens,et al.  Chemical applications of X-ray charge-density analysis. , 2001, Chemical reviews.

[51]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[52]  Philip Coppens,et al.  Charge densities come of age. , 2005, Angewandte Chemie.

[53]  Á. M. Pendás,et al.  Ions in Crystals: The Topology of the Electron Density in Ionic Materials. III. Geometry and Ionic Radii , 1998 .

[54]  Richard F. W. Bader A quantum theory of molecular structure and its applications , 1991 .

[55]  Gautam R. Desiraju,et al.  The C-h···o hydrogen bond:  structural implications and supramolecular design. , 1996, Accounts of chemical research.

[56]  Claude Lecomte,et al.  Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities , 1998 .

[57]  A. Otero-de-la-Roza,et al.  Van der Waals interactions in solids using the exchange-hole dipole moment model. , 2012, The Journal of chemical physics.

[58]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[59]  Víctor Luaña,et al.  Topological Characterization of the Electron Density Laplacian in Crystals. The Case of the Group IV Elements , 2010 .

[60]  A. Gavezzotti Calculation of Intermolecular Interaction Energies by Direct Numerical Integration over Electron Densities. I. Electrostatic and Polarization Energies in Molecular Crystals , 2002 .

[61]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[62]  V. Saunders,et al.  Crystal field effects on the topological properties of the electron density in molecular crystals: The case of urea , 1994 .

[63]  K. Schwarz,et al.  Solid state calculations using WIEN2k , 2003 .

[64]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.