Group theoretic approach for a Dirac particle in Coulomb-like potentials

The energy levels of the Dirac equation with a Kohn-Sham (KS) potential are obtained using algebraic perturbation theory based on the dynamical group structure SO(2,1) without making any non-relativistic approximation. It has been shown that this formalism reproduces the exact analytical result for the eigenvalues of the Dirac equation with both vector and scalar Coulomb potentials. The lowest-order results obtained from the analytical formulae are found to be in excellent agreement with exact numerical results.

[1]  R. S. Tutik Exact solution of the N-dimensional generalized Dirac-Coulomb equation , 1992 .

[2]  Dutt,et al.  Large-N expansion method for a spin-1/2 particle in the presence of vector and scalar potentials. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[3]  E. Papp Quasiclassical 1/N Energy‐Formulas for Relativistic Two‐Body Systems , 1991 .

[4]  R. Roychoudhury,et al.  ERRATUM: Dirac equation with Hulthen potential: an algebraic approach , 1990 .

[5]  R. Roychoudhury,et al.  Shifted 1/N expansion for the Dirac equation for vector and scalar potentials , 1990 .

[6]  Dutt,et al.  Shifted large-N expansion for a relativistic spin-1/2 particle in screened Coulomb potentials. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[7]  M. Moshinsky,et al.  The Dirac oscillator , 1989 .

[8]  Roychoudhury,et al.  Relativistic 1/N expansion for the Dirac equation. , 1989, Physical review. A, General physics.

[9]  S. Ataǧ Large‐N iterative solution of the Dirac equation , 1989 .

[10]  Dutt,et al.  Shifted large-N expansion for the energy levels of relativistic particles. , 1988, Physical review. A, General physics.

[11]  A. Rutkowski Relativistic perturbation theory: II. One-electron variational perturbation calculations , 1986 .

[12]  A. Chatterjee Large‐N solution of the Klein–Gordon equation , 1986 .

[13]  D. Berényi,et al.  Identification and angular distribution of the KL-LL2,3L2,3 satellites in the Ne K Auger spectra from the 5.5 MeV u-1 Ne3+-Ne collision process , 1986 .

[14]  A. Rutkowski Relativistic perturbation theory. I. A new perturbation approach to the Dirac equation , 1986 .

[15]  R. Hall Coulomb potential envelopes for a relativistic fermion in a central field , 1985 .

[16]  C. Pajares,et al.  On the large-N limits of relativistic equations , 1984 .

[17]  G. W. Rogers Perturbation theory for a Dirac particle in a central field: Inclusion of the anomalous-magnetic-moment term , 1984 .

[18]  K. Yamazaki,et al.  A simple approximation for eigenvalues in quantum theory , 1984 .

[19]  C. Gerry,et al.  Approximate energy eigenvalues from a generalized operator method , 1983 .

[20]  C. Gerry,et al.  Electromagnetic interactions and the relativistic infinite-component wave equation for hydrogen , 1981 .

[21]  M. Nieto HYDROGEN ATOM AND RELATIVISTIC PI MESIC ATOM IN N SPACE DIMENSIONS , 1979 .

[22]  Y. Aharonov,et al.  Logarithmic perturbation expansions , 1979 .

[23]  A. Bechler Group theoretic approach to the screened Coulomb problem , 1977 .

[24]  A. Barut,et al.  Perturbation theory for infinite-component wave equations , 1977 .

[25]  A. Barut Some Unusual Applications of Lie Algebra Representations in Quantum Theory , 1973 .

[26]  M Bednář,et al.  Algebraic treatment of quantum-mechanical models with modified Coulomb potentials , 1973 .

[27]  A. Barut,et al.  SO(4, 2)‐Formulation of the Symmetry Breaking in Relativistic Kepler Problems with or without Magnetic Charges , 1971 .

[28]  D. Cromer,et al.  Self-Consistent-Field Dirac-Slater Wave Functions for Atoms and Ions. I. Comparison with Previous Calculations , 1965 .