Comparison of Two X-ray Phase-contrast Imaging Methods with a Microfocus Source References and Links

We present a comparison for high-resolution imaging with a laboratory source between grating-based (GBI) and propagation-based (PBI) x-ray phase-contrast imaging. The comparison is done through simulations and experiments using a liquid-metal-jet x-ray microfocus source. Radiation doses required for detection in projection images are simulated as a function of the diameter of a cylindrical sample. Using monochromatic radiation, simulations show a lower dose requirement for PBI for small object features and a lower dose for GBI for larger object features. Using polychromatic radiation, such as that from a laboratory microfocus source, experiments and simulations show a lower dose requirement for PBI for a large range of feature sizes. Tested on a biological sample, GBI shows higher noise levels than PBI, but its advantage of quantitative refractive index reconstruction for multi-material samples becomes apparent.

H M Hertz | M Stampanoni | O. Bunk | C. David | K. Fezzaa | R. Byer | M. Stampanoni | J. Baruchel | E. Roessl | J. Sempau | F. Salvat | J. Zambelli | A. Pogany | T. Weitkamp | B. Masschaele | A. Ritter | P. Bartl | F. Bayer | W. Haas | G. Anton | M. Bech | P. Kraft | E. Eikenberry | C. Brönnimann | C. Grünzweig | T. Thüring | H. Hertz | T. Schlossbauer | S. Schleede | J. Keyriläinen | C. Muehleman | J. Stayman | S. Mayo | M. Stockmar | A. Burvall | N. Bevins | C. Kottler | M. Aslund | S. Rutishauser | I. Zanette | U. Straumann | P. Coan | T. Zhou | U. Lundström | D. Larsson | J. Siewerdsen | J. Durst | P. Takman | D H Larsson | U Lundström | A Burvall | B. Pinzer | M. Otendal | M. Arsenian Henriksson | C David | T Thüring | S Rutishauser | Phase | D. Connor | A. Sztrókay | T Zhou | A. Waluś | U. Westermark | L. Scott | T. Michel | Penelope | F. Pfeiffer | P. Thibault | T. Gureyev | S. Seltzer | A. Rack | M. Leidenius | K. von Smitten | P. Cloetens | A. Bravin | M. Dierick | H. M. Hertz | A. Diaz | T. Flohr | S. Wilkins | D. Gao | A. W. Stevenson | D. Chapman | E. Pisano | Z. Zhong | F Pfeiffer | M. Stampanoni | D Paganin | P. Miller | E. Ziegler | L. Van hoorebeke | T. Thüring | C. David | S W Wilkins | M. Wilhelm | H. Brismar | Hertz | T. Zhou | T. R. Raupach | Flohr | D. U. H. Lundström | A. Larsson | P. A. Burvall | L. Takman | H. Scott | X-Ray Hertz | O Hemberg | D H Larsson | T Weitkamp | C Parham | L. D. Chapman | D. P. Fogarty | T. Tzvetkov | B. Reinhart | G. Khelashvili | T Thüring | U. H. Larsson | M. Westermark | A. Arsenian Henriksson | H. M. Burvall | First | D. Hahn | F. Bamberg | M. Reiser | P Modregger | T Köhler | K. J. Engel | R Raupach | E Fredenberg | M. Danielsson | P C Diemoz | E Pagot | S. Fiedler | J. Härtwig | M. Karjalainen-Lindsberg | M. Langer | V Revol | R. Kaufmann | C. Urban | G H Chen | K. Li | Z. Qi | K Li | G. H. Chen | J Zambelli | X Tang | Y. Yang | S. Tang | T Weber | T Zhou | A Burvall | G W Faris | J Vlassenbroeck | V. Cnudde | P. Jacobs | J H Hubbell | J Baró | J. M. Fernandezvarea | H H Barrett | K. J. Myers | U Lundström

[1]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[2]  A. Rose The sensitivity performance of the human eye on an absolute scale. , 1948, Journal of the Optical Society of America.

[3]  Ke Li,et al.  Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography. , 2010, Medical physics.

[4]  Hans M. Hertz,et al.  Liquid-metal-jet anode electron-impact x-ray source , 2003 .

[5]  R. Kaufmann,et al.  Noise analysis of grating-based x-ray differential phase contrast imaging. , 2010, The Review of scientific instruments.

[6]  S. Wilkins,et al.  Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object , 2002, Journal of microscopy.

[7]  A Bravin,et al.  Analytical and experimental determination of signal-to-noise ratio and figure of merit in three phase-contrast imaging techniques. , 2012, Optics express.

[8]  Anna Burvall,et al.  Phase Retrieval in X-ray Phase-contrast Imaging Suitable for Tomography , 2022 .

[9]  Rainer Raupach,et al.  Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography , 2011, Physics in medicine and biology.

[10]  Zhong Zhong,et al.  Design and implementation of a compact low-dose diffraction enhanced medical imaging system. , 2009, Academic radiology.

[11]  O. Bunk,et al.  Hard x-ray phase tomography with low-brilliance sources. , 2007, Physical review letters.

[12]  Thilo Michel,et al.  Noise in x-ray grating-based phase-contrast imaging. , 2011, Medical physics.

[13]  M Stampanoni,et al.  Sensitivity of X-ray grating interferometry. , 2011, Optics express.

[14]  Lynn Kissel,et al.  RTAB: the Rayleigh scattering database , 2000 .

[15]  M. Danielsson,et al.  Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach. , 2012, Medical physics.

[16]  P. C. Diemoz,et al.  Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry. , 2012, Optics express.

[17]  Anna Burvall,et al.  First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation. , 2013, Medical physics.

[18]  R L Byer,et al.  Three-dimensional beam-deflection optical tomography of a supersonic jet. , 1988, Applied optics.

[19]  Franz Pfeiffer,et al.  Numerical comparison of X-ray differential phase contrast and attenuation contrast , 2012, Biomedical optics express.

[20]  Guang-Hong Chen,et al.  Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT. , 2010, Medical physics.

[21]  Marco Stampanoni,et al.  X-ray grating interferometry with a liquid-metal-jet source , 2013 .

[22]  H M Hertz,et al.  X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging , 2012, Physics in medicine and biology.

[23]  Dean Chapman,et al.  The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument. , 2009, The Review of scientific instruments.

[24]  O. Bunk,et al.  Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources , 2006 .

[25]  H M Hertz,et al.  X-ray phase contrast for CO2 microangiography , 2012, Physics in medicine and biology.

[26]  P. Cloetens,et al.  Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging , 2006, Physics in medicine and biology.

[27]  Guang-Hong Chen,et al.  Fundamental relationship between the noise properties of grating-based differential phase contrast CT and absorption CT: theoretical framework using a cascaded system model and experimental validation. , 2013, Medical physics.

[28]  Franz Pfeiffer,et al.  X-ray phase imaging with a grating interferometer. , 2005, Optics express.

[29]  V. Cnudde,et al.  Software tools for quantification of X-ray microtomography at the UGCT , 2007 .

[30]  Rainer Raupach,et al.  Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging. , 2012, Medical physics.

[31]  Xiangyang Tang,et al.  Characterization of imaging performance in differential phase contrast CT compared with the conventional CT--noise power spectrum NPS(k). , 2011, Medical physics.

[32]  Thomas Köhler,et al.  Noise properties of grating-based x-ray phase contrast computed tomography. , 2011, Medical physics.

[33]  H M Hertz,et al.  A 24 keV liquid-metal-jet x-ray source for biomedical applications. , 2011, The Review of scientific instruments.

[34]  O. Bunk,et al.  Hard-X-ray dark-field imaging using a grating interferometer. , 2008, Nature materials.

[35]  A Fandos-Morera,et al.  Breast tumors: composition of microcalcifications. , 1988, Radiology.

[36]  Hans M. Hertz,et al.  Low-dose phase-contrast X-ray imaging: a comparison of two methods , 2013 .

[37]  J. Baró,et al.  PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter , 1995 .