Plasmonic Nanohole Sensor for Capturing Single Virus-Like Particles toward Virucidal Drug Evaluation.

A plasmonic nanohole sensor for virus-like particle capture and virucidal drug evaluation is reported. Using a materials-selective surface functionalization scheme, passive immobilization of virus-like particles only within the nanoholes is achieved. The findings demonstrate that a low surface coverage of particles only inside the functionalized nanoholes significantly improves nanoplasmonic sensing performance over conventional nanohole arrays.

[1]  Wei Zhou,et al.  Enhanced optical transmission mediated by localized plasmons in anisotropic, three-dimensional nanohole arrays. , 2010, Nano letters.

[2]  Richard J Kuhn,et al.  Dengue structure differs at the temperatures of its human and mosquito hosts , 2013, Proceedings of the National Academy of Sciences.

[3]  Nam-Joon Cho,et al.  Employing two different quartz crystal microbalance models to study changes in viscoelastic behavior upon transformation of lipid vesicles to a bilayer on a gold surface. , 2007, Analytical chemistry.

[4]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[5]  Nam-Joon Cho,et al.  Controlling lipid membrane architecture for tunable nanoplasmonic biosensing. , 2014, Small.

[6]  Robert Damoiseaux,et al.  A broad-spectrum antiviral targeting entry of enveloped viruses , 2010, Proceedings of the National Academy of Sciences.

[7]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[8]  Sang-Joon Cho,et al.  Employing an amphipathic viral peptide to create a lipid bilayer on Au and TiO2. , 2007, Journal of the American Chemical Society.

[9]  David J. Norris,et al.  Linewidth‐Optimized Extraordinary Optical Transmission in Water with Template‐Stripped Metallic Nanohole Arrays , 2012 .

[10]  K. Kavanagh,et al.  Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[11]  Nam-Joon Cho,et al.  Correlation between Membrane Partitioning and Functional Activity in a Single Lipid Vesicle Assay Establishes Design Guidelines for Antiviral Peptides. , 2015, Small.

[12]  A. Fauci,et al.  Emerging Viral Diseases: Confronting Threats with New Technologies , 2014, Science Translational Medicine.

[13]  Paul J. Harrison,et al.  Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[14]  S. Biswal,et al.  Characterizing α-helical peptide aggregation on supported lipid membranes using microcantilevers. , 2014, Analytical chemistry.

[15]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[16]  David Sinton,et al.  Nanoholes as nanochannels: flow-through plasmonic sensing. , 2009, Analytical chemistry.

[17]  Mikael Käll,et al.  Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. , 2005, Journal of the American Chemical Society.

[18]  David Sinton,et al.  Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. , 2010, Analytical chemistry.

[19]  Joshua A. Jackman,et al.  Nanoplasmonic biosensing for soft matter adsorption: kinetics of lipid vesicle attachment and shape deformation. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[20]  Fredrik Höök,et al.  Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates , 2010, Nature Protocols.

[21]  Sang‐Hyun Oh,et al.  Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. , 2012, Analytical chemistry.

[22]  E. Clercq Strategies in the design of antiviral drugs , 2010, Nature Reviews Drug Discovery.

[23]  Joshua A. Jackman,et al.  Contribution of temperature to deformation of adsorbed vesicles studied by nanoplasmonic biosensing. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[24]  Prashant Nagpal,et al.  Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. , 2011, ACS nano.

[25]  R. Bartenschlager,et al.  On the history of hepatitis C virus cell culture systems. , 2014, Journal of medicinal chemistry.

[26]  Milan Mrksich,et al.  A conformation- and ion-sensitive plasmonic biosensor. , 2011, Nano letters.

[27]  Moses Rodriguez,et al.  High-affinity binding of remyelinating natural autoantibodies to myelin-mimicking lipid bilayers revealed by nanohole surface plasmon resonance. , 2012, Analytical chemistry.

[28]  Fredrik Höök,et al.  Influence of the Evanescent Field Decay Length on the Sensitivity of Plasmonic Nanodisks and Nanoholes , 2015 .

[29]  Savas Tasoglu,et al.  Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. , 2013, ACS nano.

[30]  N. Cho,et al.  Mechanism of an amphipathic alpha-helical peptide's antiviral activity involves size-dependent virus particle lysis. , 2009, ACS chemical biology.

[31]  Hans-Georg Kräusslich,et al.  The HIV lipidome: a raft with an unusual composition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Anthony S Fauci,et al.  The perpetual challenge of infectious diseases. , 2012, The New England journal of medicine.

[33]  Aydogan Ozcan,et al.  Handheld high-throughput plasmonic biosensor using computational on-chip imaging , 2014, Light: Science & Applications.

[34]  Hakho Lee,et al.  Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor , 2014, Nature Biotechnology.

[35]  Hyungsoon Im,et al.  Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors , 2007 .

[36]  Sang‐Hyun Oh,et al.  Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. , 2010, Chemical science.

[37]  Nam-Joon Cho,et al.  Strategies for enhancing the sensitivity of plasmonic nanosensors , 2015 .

[38]  Graça Raposo,et al.  Extracellular vesicles: Exosomes, microvesicles, and friends , 2013, The Journal of cell biology.

[39]  D. Sinton,et al.  Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. , 2013, The Analyst.

[40]  M. A. Otte,et al.  Trends and challenges of refractometric nanoplasmonic biosensors: a review. , 2014, Analytica chimica acta.

[41]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[42]  Joshua A. Jackman,et al.  Rupture of lipid vesicles by a broad-spectrum antiviral peptide: influence of vesicle size. , 2013, The journal of physical chemistry. B.

[43]  M. Peterka,et al.  Evaluation of nanoparticle tracking analysis for total virus particle determination , 2012, Virology Journal.

[44]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[45]  Gregory J. Hardy,et al.  Biomimetic supported lipid bilayers with high cholesterol content formed by α-helical peptide-induced vesicle fusion. , 2012, Journal of materials chemistry.

[46]  N. Cho,et al.  Single vesicle analysis reveals nanoscale membrane curvature selective pore formation in lipid membranes by an antiviral α-helical peptide. , 2012, Nano letters.

[47]  Konstantins Jefimovs,et al.  Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications. , 2011, Small.

[48]  S. Stanley Biological nanoparticles and their influence on organisms. , 2014, Current opinion in biotechnology.

[49]  Fredrik Höök,et al.  Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. , 2007, Nano letters.

[50]  Fredrik Höök,et al.  Specific Self‐Assembly of Single Lipid Vesicles in Nanoplasmonic Apertures in Gold , 2008 .

[51]  Sang-Hyun Oh,et al.  Nanopore-induced spontaneous concentration for optofluidic sensing and particle assembly. , 2013, Analytical chemistry.

[52]  Kai Simons,et al.  The Lipidomes of Vesicular Stomatitis Virus, Semliki Forest Virus, and the Host Plasma Membrane Analyzed by Quantitative Shotgun Mass Spectrometry , 2009, Journal of Virology.

[53]  A. E. Cetin,et al.  Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view , 2014, Scientific Reports.

[54]  E. Clercq Human viral diseases: what is next for antiviral drug discovery? , 2012 .

[55]  Fredrik Höök,et al.  Improving the instrumental resolution of sensors based on localized surface plasmon resonance. , 2006, Analytical chemistry.

[56]  Nam-Joon Cho,et al.  Model Membrane Platforms for Biomedicine: Case Study on Antiviral Drug Development , 2012, Biointerphases.

[57]  H. Altug,et al.  An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. , 2010, Nano letters.

[58]  Hatice Altug,et al.  Actively transporting virus like analytes with optofluidics for rapid and ultrasensitive biodetection. , 2013, Lab on a chip.