NGC 2770: A SUPERNOVA Ib FACTORY?

NGC 2770 has been the host of three supernovae (SNe) of Type Ib during the last ten years, SN 1999eh, SN 2007uy, and SN 2008D. SN 2008D attracted special attention due to the serendipitous discovery of an associated X-ray transient. In this paper, we study the properties of NGC 2770 and specifically the three SN sites to investigate whether this galaxy is in any way peculiar to cause a high frequency of SNe Ib. We model the global spectral energy distribution of the galaxy from broadband data and derive a star formation and SN rate comparable to the values of the Milky Way. We further study the galaxy using longslit spectroscopy covering the major axis and the three SN sites. From the spectroscopic study we find subsolar metallicities for the SN sites, a high extinction and a moderate star formation rate. In a high-resolution spectrum, we also detect diffuse interstellar bands in the line of sight toward SN 2008D. A comparison of NGC 2770 to the global properties of a galaxy sample with high SN occurrence (>= 3 SN in the last 100 years) suggests that NGC 2770 is not particularly destined to produce such an enhancement of observed SNe. Its properties are also very different from gamma-ray burst host galaxies. Statistical considerations on SN Ib detection rates give a probability of ~1.5% to find a galaxy with three Ib SNe detected in ten years. The high number of rare Ib SNe in this galaxy is therefore likely to be a coincidence rather than special properties of the galaxy itself. NGC 2770 has a small irregular companion, NGC 2770B, which is highly star-forming, has a very low mass and one of the lowest metallicities detected in the nearby universe as derived from longslit spectroscopy. In the most metal poor part, we even detect Wolf-Rayet (WR) features, which is at odds with most current models of WR stars which require high metallicities. Based on observations with the Nordic Optical Telescope, ESO proposal 080.D-0526, the GALEX and NED databases.

[1]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[2]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.

[3]  David Griffiths,et al.  The Galaxy Evolution Explorer , 2003, SPIE Astronomical Telescopes + Instrumentation.

[4]  S. Valenti,et al.  Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS) , 2007, 0710.3763.

[5]  Adam G. Riess,et al.  HIGH-REDSHIFT SUPERNOVA RATES , 2004 .

[6]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[7]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[8]  Hiroyuki Mito,et al.  The IRSA 2MASS all-sky point source catalog , 2008 .

[9]  Princeton,et al.  MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .

[10]  B. L. Jensen,et al.  The supernova 2003lw associated with X-ray flash 031203 , , 2004, astro-ph/0403451.

[11]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[12]  B. L. Jensen,et al.  Supernova 2006aj and the associated X-Ray Flash 060218 , 2006 .

[13]  Two extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey , 2006, astro-ph/0604234.

[14]  N. M. Nagar,et al.  The infrared supernova rate in starburst galaxies , 2003, astro-ph/0302323.

[15]  A. Pastorello,et al.  Received... / Accepted... , 2004 .

[16]  M. M. Moshir,et al.  IRAS Faint Source Catalogue, version 2.0. , 1990 .

[17]  E. O. Ofek,et al.  A novel explosive process is required for the γ-ray burst GRB 060614 , 2006, Nature.

[18]  M. Smith,et al.  A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey , 2008, 0801.3297.

[19]  E. Ofek,et al.  An extremely luminous X-ray outburst at the birth of a supernova , 2008, Nature.

[20]  Hua-b. Li,et al.  Probing the Turbulence Dissipation Range and Magnetic Field Strengths in Molecular Clouds. II. Directly Probing the Ion–neutral Decoupling Scale , 2007, The Astrophysical Journal.

[21]  Johan P. U. Fynbo,et al.  THE PROPERTIES OF THE HOST GALAXY AND THE IMMEDIATE ENVIRONMENT OF GRB 980425/SN 1998bw FROM THE MULTIWAVELENGTH SPECTRAL ENERGY DISTRIBUTION , 2008, 0809.0508.

[22]  D. A. Kann,et al.  An optical supernova associated with the X-ray flash XRF 060218 , 2006, Nature.

[23]  J. R. Thorstensen,et al.  GRB 060218/SN 2006aj: A Gamma-Ray Burst and Prompt Supernova at z = 0.0335 , 2006, astro-ph/0603686.

[24]  Iap,et al.  Galaxies with Wolf-Rayet signatures in the low-redshift Universe. A survey using the Sloan Digital Sky Survey , 2008, 0805.1073.

[25]  D. Fugazza,et al.  An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova , 2006, Nature.

[26]  N. Panagia,et al.  The progenitor of SN1987A , 1987, Nature.

[27]  D. Bersier,et al.  Photometry and Spectroscopy of GRB 030329 and Its Associated Supernova 2003dh: The First Two Months , 2003, astro-ph/0307435.

[28]  THE ASTROPHYSICAL JOURNAL: ACCEPTED ON DECEMBER 5TH, 2002 Preprint typeset using L ATEX style emulateapj v. 26/01/00 ESTIMATING STAR FORMATION RATES FROM INFRARED AND RADIO LUMINOSITIES: THE ORIGIN OF THE RADIO–INFRARED CORRELATION , 2002 .

[29]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[30]  Luminosity and mass limits for the progenitor of the type Ic supernova 2004gt in NGC 4038 , 2005, astro-ph/0506436.

[31]  E. O. Ofek,et al.  GRB 060505: A Possible Short-Duration Gamma-Ray Burst in a Star-forming Region at a Redshift of 0.09 , 2007 .

[32]  S. Owocki,et al.  On the Role of Continuum-driven Eruptions in the Evolution of Very Massive Stars and Population III Stars , 2006, astro-ph/0606174.

[33]  A. Pastorello,et al.  A deeper search for the progenitor of the Type Ic Supernova 2002ap , 2007, 0706.0500.

[34]  C. Carilli,et al.  Radio-to-Far-Infrared Spectral Energy Distribution and Photometric Redshifts for Dusty Starburst Galaxies , 2001, astro-ph/0112074.

[35]  Classifications of the Host Galaxies of Supernovae, Set III , 2003, astro-ph/0308195.

[36]  I. Skillen,et al.  EARLY SPECTROSCOPIC IDENTIFICATION OF SN 2008D , 2008, 0805.1188.

[37]  E. Berger,et al.  A Morphological Study of Gamma-Ray Burst Host Galaxies , 2005 .

[38]  D. Kiselman,et al.  Line formation in solar granulation IV. (O I), O I and OH lines and the photospheric O abundance , 2003, astro-ph/0312290.

[39]  M. Sullivan,et al.  The Type Ia Supernova Rate at z ≈ 0.5 from the Supernova Legacy Survey , 2006, astro-ph/0605148.

[40]  S. Smartt,et al.  Mass limits for the progenitor star of supernova 2001du and other Type II-P supernovae , 2003, astro-ph/0301324.

[41]  P. M. Vreeswijk,et al.  IFU observations of the GRB 980425/SN 1998bw host galaxy : emission line ratios in GRB regions , 2008, 0807.3554.

[42]  Tx,et al.  SN 2004A: Another Type II-P Supernova with a Red Supergiant Progenitor , 2006, astro-ph/0603670.

[43]  R. Foley,et al.  On the Progenitors of Two Type IIP Supernovae in the Virgo Cluster 1 , 2009 .

[44]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[45]  R. Kennicutt A spectrophotometric atlas of galaxies , 1992 .

[46]  F. Mannucci,et al.  Discovery of two infrared supernovae: a new window on the SN search , 2002, astro-ph/0204107.

[47]  A. Siebert,et al.  A model of spectral galaxy evolution including the effects of nebular emission , 2001, astro-ph/0107139.

[48]  P. Berlind,et al.  Early-Time Photometry and Spectroscopy of the Fast Evolving SN 2006aj Associated with GRB 060218 , 2006 .

[49]  A. J. Levan,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[50]  L. A. Antonelli,et al.  SN 2003lw and GRB 031203: A Bright Supernova for a Faint Gamma-Ray Burst , 2004, astro-ph/0405449.

[51]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[52]  B. Mobasher,et al.  Star Formation Rates in Faint Radio Galaxies , 1998, astro-ph/9805327.

[53]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[54]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[55]  S. Savaglio,et al.  THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS , 2008, 0803.2718.

[56]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[57]  J. Bloom,et al.  The Supernova Associated with GRB 031203: SMARTS Optical-Infrared Light Curves from 0.2 to 92 Days , 2004, astro-ph/0403510.

[58]  N. B. Suntzeff,et al.  The J-Band Light Curve of SN 2003lw, Associated with GRB 031203 , 2004, astro-ph/0403608.

[59]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[60]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[61]  Jesper Sollerman,et al.  SPATIALLY RESOLVED PROPERTIES OF THE GRB 060505 HOST: IMPLICATIONS FOR THE NATURE OF THE PROGENITOR , 2008 .

[62]  L. Dessart,et al.  Stellar and wind properties of LMC WC4 stars A metallicity dependence for Wolf-Rayet mass-loss rates ? , 2002, astro-ph/0206233.

[63]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[64]  S. Smartt,et al.  The Birth Place of the Type Ic Supernova 2007gr , 2007, 0709.2354.

[65]  M. J. Michalowski,et al.  The Nature of GRB-selected Submillimeter Galaxies: Hot and Young , 2007, 0708.3850.

[66]  J. J. Condon,et al.  The Arecibo 2380 MHz survey of bright galaxies. , 1978 .

[67]  J. P. U. Fynbo,et al.  On the nature of nearby GRB/SN host galaxies ⋆ , 2005 .

[68]  D. Fox,et al.  On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.

[69]  G. Walker,et al.  Narrow Diffuse Interstellar Bands: A Survey with Precise Wavelengths , 2000 .

[70]  R. Davies,et al.  The peculiar velocity of the Local Group – II. H I observations of Sc galaxies , 1988 .

[71]  J. Gorosabel,et al.  ON THE DISTRIBUTION OF STELLAR MASSES IN GAMMA-RAY BURST HOST GALAXIES , 2008, 0803.2235.

[72]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae , 1976 .

[73]  S. Klose,et al.  A Systematic Analysis of Supernova Light in Gamma-Ray Burst Afterglows , 2003, astro-ph/0311610.

[74]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[75]  A. Efstathiou,et al.  Adaptive Optics Discovery of Supernova 2004ip in the Nuclear Regions of the Luminous Infrared Galaxy IRAS 18293–3413 , 2007, astro-ph/0702591.

[76]  Bernard Delabre,et al.  Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory , 2000, Astronomical Telescopes and Instrumentation.

[77]  J. Gorosabel,et al.  The galaxies in the field of the nearby GRB 980425/SN 1998bw , 2005, astro-ph/0510813.

[78]  Jesper Sollerman,et al.  No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.

[79]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .