Robust Algorithms with Polynomial Loss for Near-Unanimity CSPs

An instance of the constraint satisfaction problem (CSP) is given by a family of constraints on overlapping sets of variables, and the goal is to assign values from a fixed domain to the variables ...

[1]  Andrei A. Krokhin,et al.  Two new homomorphism dualities and lattice operations , 2011, J. Log. Comput..

[2]  Andrei A. Bulatov,et al.  Bounded relational width , 2009 .

[3]  K. A. Baker,et al.  Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems , 1975 .

[4]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[5]  Martin C. Cooper,et al.  Characterising Tractable Constraints , 1994, Artif. Intell..

[6]  Benoît Larose,et al.  Omitting Types, Bounded Width and the Ability to Count , 2009, Int. J. Algebra Comput..

[7]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[8]  Madhur Tulsiani,et al.  A characterization of strong approximation resistance , 2013, Electron. Colloquium Comput. Complex..

[9]  Venkatesan Guruswami,et al.  Tight bounds on the approximability of almost-satisfiable Horn SAT and exact hitting set , 2011, SODA '11.

[10]  Andrei A. Krokhin,et al.  Majority constraints have bounded pathwidth duality , 2008, Eur. J. Comb..

[11]  Prasad Raghavendra,et al.  Optimal algorithms and inapproximability results for every CSP? , 2008, STOC.

[12]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[13]  Konstantin Makarychev,et al.  Approximation Algorithms for CSPs , 2017 .

[14]  Libor Barto,et al.  Robustly Solvable Constraint Satisfaction Problems , 2015, SIAM J. Comput..

[15]  Moses Charikar,et al.  Near-optimal algorithms for unique games , 2006, STOC '06.

[16]  Johan Håstad On the NP-Hardness of Max-Not-2 , 2014, SIAM J. Comput..

[17]  Subhash Khot On the power of unique 2-prover 1-round games , 2002, STOC '02.

[18]  Vladimir Kolmogorov,et al.  The Complexity of General-Valued CSPs , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[19]  Libor Barto,et al.  Constraint Satisfaction Problems Solvable by Local Consistency Methods , 2014, JACM.

[20]  R. Willard,et al.  Characterizations of several Maltsev conditions , 2015 .

[21]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[22]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[23]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[24]  Peter Jeavons,et al.  The Complexity of Constraint Languages , 2006, Handbook of Constraint Programming.

[25]  Dmitriy Zhuk,et al.  A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[26]  Stanislav Zivny,et al.  The complexity of finite-valued CSPs , 2013, STOC '13.

[27]  Wolfgang Bibel,et al.  Constraint Satisfaction from a Deductive Viewpoint , 1988, Artif. Intell..

[28]  Marcin Kozik Weak consistency notions for all the CSPs of bounded width∗ , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[29]  Siu On Chan,et al.  Approximation resistance from pairwise independent subgroups , 2013, STOC '13.

[30]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[31]  Andrei A. Krokhin,et al.  Robust Satisfiability for CSPs: Hardness and Algorithmic Results , 2013, TOCT.

[32]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[33]  Andrei A. Bulatov,et al.  A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[34]  Andrei A. Krokhin,et al.  CSP duality and trees of bounded pathwidth , 2010, Theor. Comput. Sci..

[35]  Uri Zwick,et al.  Finding almost-satisfying assignments , 1998, STOC '98.

[36]  Libor Barto,et al.  Near Unanimity Constraints Have Bounded Pathwidth Duality , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[37]  Vladimir Kolmogorov,et al.  The Power of Linear Programming for General-Valued CSPs , 2013, SIAM J. Comput..

[38]  Alexandr Kazda,et al.  $n$-permutability and linear Datalog implies symmetric Datalog , 2015, Log. Methods Comput. Sci..

[39]  Moses Charikar,et al.  Near-optimal algorithms for maximum constraint satisfaction problems , 2007, SODA '07.

[40]  Pascal Tesson,et al.  Universal algebra and hardness results for constraint satisfaction problems , 2007, Theor. Comput. Sci..

[41]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[42]  L. Barto Finitely Related Algebras in Congruence Distributive Varieties Have Near Unanimity Terms , 2013, Canadian Journal of Mathematics.

[43]  Andrei A. Bulatov,et al.  Dualities for Constraint Satisfaction Problems , 2008, Complexity of Constraints.

[44]  Subhash Khot On the Unique Games Conjecture (Invited Survey) , 2010, Computational Complexity Conference.

[45]  Andrei A. Krokhin,et al.  Towards a Characterization of Constant-Factor Approximable Min CSPs , 2015, SODA.

[46]  Víctor Dalmau,et al.  Linear datalog and bounded path duality of relational structures , 2005, Log. Methods Comput. Sci..

[47]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..