A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media

This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating the bounded domain. For the boundary unknowns we take spaces of periodic splines. We show how to transmit information from the approximate boundary to the exact one in an efficient way and prove well-posedness of the Galerkin method. Error estimates are provided and experimentally corroborated at the end of the work.

[1]  J. Aubin Approximation of Elliptic Boundary-Value Problems , 1980 .

[2]  M. Zlámal Curved Elements in the Finite Element Method. I , 1973 .

[3]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[4]  T. Petersdorff,et al.  Boundary integral equations for mixed Dirichlet, Neumann and transmission problems , 1989 .

[5]  Wolfgang L. Wendland,et al.  Some applications of a galerkin‐collocation method for boundary integral equations of the first kind , 1984 .

[6]  Salim Meddahi,et al.  On the coupling of boundary integral and mixed finite element methods , 1996 .

[7]  Salim Meddahi,et al.  Analysis of a new BEM‐FEM coupling for two‐dimensional fluid‐solid interaction , 2005 .

[8]  Andreas Mandelis,et al.  Image-enhanced thermal-wave slice diffraction tomography with numerically simulated reconstructions , 1997 .

[9]  A. Mandelis Diffusion-wave fields , 2001 .

[10]  Franco Brezzi,et al.  On the coupling of boundary integral and finite element methods , 1979 .

[11]  Rainer Kress,et al.  Transmission problems for the Helmholtz equation , 1978 .

[12]  Salim Meddahi,et al.  A dual-dual mixed formulation for nonlinear exterior transmission problems , 2001, Math. Comput..

[13]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[14]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[15]  Salim Meddahi,et al.  A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems , 2004 .

[16]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[17]  Francisco-Javier Sayas,et al.  Boundary integral approximation of a heat-diffusion problem in time-harmonic regime , 2006, Numerical Algorithms.

[18]  Martin Costabel,et al.  Symmetric Methods for the Coupling of Finite Elements and Boundary Elements (Invited contribution) , 1987 .

[19]  Francisco-Javier Sayas,et al.  Asymptotic expansions of the error of spline Galerkin boundary element methods , 1998 .

[20]  Jianxin Zhou,et al.  Boundary element methods , 1992, Computational mathematics and applications.

[21]  Gabriel N. Gatica,et al.  Boundary-Field Equation Methods for a Class of Nonlinear Problems , 1995 .

[22]  F. Sayas A nodal coupling of finite and boundary elements , 2003 .

[23]  M. Lenoir Optimal isoparametric finite elements and error estimates for domains involving curved boundaries , 1986 .

[24]  Francisco-Javier Sayas,et al.  A Fully Discrete BEM-FEM for the Exterior Stokes Problem in the Plane , 2000, SIAM J. Numer. Anal..

[25]  A. Ženíšek,et al.  Nonlinear elliptic and evolution problems and their finite element approximations , 1990 .

[26]  Thermal wave scattering by spheres , 2004 .

[27]  Salim Meddahi,et al.  Computing Acoustic Waves in an Inhomogeneous Medium of the Plane by a Coupling of Spectral and Finite Elements , 2003, SIAM J. Numer. Anal..

[28]  Ralph E. Kleinman,et al.  On single integral equations for the transmission problem of acoustics , 1988 .

[29]  Gabriel N. Gatica,et al.  On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in R2 , 1992 .

[30]  General solution for the thermal wave scattering in fiber composites , 2002 .

[31]  A. R. Mitchell,et al.  Curved elements in the finite element method , 1974 .

[32]  Darryl P Almond,et al.  Photothermal science and techniques , 1996 .

[33]  Andreas Mandelis,et al.  Photoacoustic and thermal wave phenomena in semiconductors , 1987 .

[34]  S. Mikhlin,et al.  Mathematical Physics, An Advanced Course , 1973 .

[35]  S. Meddahi A MIXED-FEM AND BEM COUPLING FOR A TWO-DIMENSIONAL EDDY CURRENT PROBLEM , 2001 .

[36]  Harvey Thomas Banks,et al.  Boundary estimation problems arising in thermal tomography , 1989 .

[37]  T. Hohage,et al.  Detecting corrosion using thermal measurements , 2007 .

[38]  Salim Meddahi,et al.  A mixed–FEM and BEM coupling for a three-dimensional eddy current problem , 2003 .

[39]  Martin Costabel,et al.  A direct boundary integral equation method for transmission problems , 1985 .

[40]  F. Brezzi,et al.  On the coupling of boundary integral and finite element methods , 1979 .

[41]  A. Mandelis Diffusion-wave fields : mathematical methods and Green functions , 2001 .

[42]  Salim Meddahi,et al.  A combination of spectral and finite elements for an exterior problem in the plane , 2002 .

[43]  R. Kress Linear Integral Equations , 1989 .

[44]  George C. Hsiao,et al.  A Galerkin collocation method for some integral equations of the first kind , 1980, Computing.