A multiscale computational method for medium-frequency vibrations of assemblies of heterogeneous plates

Abstract A new approach, called the “variational theory of complex rays” has been developed in order to calculate the vibrations of slightly damped elastic plates in the medium-frequency range. The resolution of a small system of equations which does not result from a fine spatial discretization of the structure leads to the evaluation of effective quantities (deformation energy, vibration amplitude,…). Here, we extend this approach, which was already validated for assemblies of homogeneous substructures, to the case of heterogeneous substructures.

[1]  R. Craig Substructure Methods in Vibration , 1995 .

[2]  J. Ginsberg,et al.  Mid-Frequency Range Acoustic Radiation From Slender Elastic Bodies Using the Surface Variational Principle , 1998 .

[3]  Ismael Herrera,et al.  Trefftz method: Fitting boundary conditions , 1987 .

[4]  H. Saunders,et al.  Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates , 1985 .

[5]  Frank J. Rizzo,et al.  A boundary integral equation method for radiation and scattering of elastic waves in three dimensions , 1985 .

[6]  I. Babuska,et al.  Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions , 1999 .

[7]  P. Pinsky,et al.  Galerkin Generalized Least Squares finite element methods for time-harmonic structural acoustics , 1998 .

[8]  Thomas J. R. Hughes,et al.  Recent developments in finite element methods for structural acoustics , 1996 .

[9]  S. Makarov,et al.  An iterative solver of the Helmholtz integral equation for high-frequency acoustic scattering , 1998 .

[10]  Andrew Y. T. Leung,et al.  FOURIERp-ELEMENT FOR THE ANALYSIS OF BEAMS AND PLATES , 1998 .

[11]  L. Arnaud,et al.  A new computational method for structural vibrations in the medium-frequency range , 2000 .

[12]  Paul E. Barbone,et al.  Scattering by a hybrid asymptotic/finite element method , 1998 .

[13]  R. Lyon,et al.  Power Flow between Linearly Coupled Oscillators , 1962 .

[14]  Christian Soize,et al.  Reduced models in the medium frequency range for general dissipative structural-dynamics systems , 1998, European Journal of Mechanics - A/Solids.

[15]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[16]  Isaac Harari,et al.  Improved finite element methods for elastic waves , 1998 .

[17]  La Théorie Variationnelle des Rayons Complexes pour le calcul des vibrations moyennes fréquences , 2000 .

[18]  北原 道弘 Boundary integral equation methods in eigenvalue problems of elastodynamics and thin plates , 1985 .

[19]  P. Ladevèze,et al.  The variational theory of complex rays for the calculation of medium‐frequency vibrations , 2001 .

[20]  P. Ladevèze Local effects in the analysis of structures , 1985 .

[21]  Earl H. Dowell,et al.  Asymptotic Modal Analysis and Statistical Energy Analysis of Dynamical Systems , 1985 .

[22]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[23]  Philippe Bouillard,et al.  Error estimation and adaptivity for the finite element method in acoustics , 1998 .

[24]  Peter M. Pinsky,et al.  A multiscale finite element method for the Helmholtz equation , 1998 .

[25]  I. Babuska,et al.  Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation , 1995 .

[26]  I. Babuska,et al.  Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .

[27]  J. M. Cuschieri Vibration transmission through periodic structures using a mobility power flow approach , 1990 .

[28]  S. H. Sung,et al.  Power Flow Finite Element Analysis of Dynamic Systems: Basic Theory and Application to Beams , 1989 .

[29]  Thomas J. R. Hughes,et al.  Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains , 1992 .

[30]  Leszek Demkowicz,et al.  Solution of elastic scattering problems in linear acoustics using h-p boundary element method , 1992 .

[31]  Yan Zhang,et al.  Multiple scale finite element methods , 1991 .

[32]  Mohamed Ichchou,et al.  ENERGY MODELS OF ONE-DIMENSIONAL, MULTI-PROPAGATIVE SYSTEMS , 1997 .

[33]  A. Girard,et al.  Frequency Response Smoothing and Structural Path Analysis: Application to Beam Trusses , 1993 .

[34]  Brian R. Mace On The Statistical Energy Analysis Hypothesis Of Coupling Power Proportionality And Some Implications Of Its Failure , 1994 .

[35]  Jeong Hoon Kang,et al.  FREE VIBRATION ANALYSIS OF MEMBRANES USING WAVE-TYPE BASE FUNCTIONS , 1996 .