A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm

Abstract In this article, the triple diode model (TDM) is studied for modeling the Canadian-Solar-CS6P-240P poly-crystalline PV module, Kyocera Solar KC200GT multi-crystalline PV module, Sharp NU-(Q250W2) mono-crystalline PV module, and Pythagoras Solar Large PVGU Window mono-crystalline PV module. A novel hybrid algorithm of the marine predator’s algorithm (MPA) and slime mould algorithm (SMA) (HMPA) is proposed to enhance the MPA exploitation phase while identifying the TDM parameters. The HMPA results are compared to several recent algorithms that are equilibrium optimizer (EO), manta ray foraging optimization (MRFO), transient search optimization (TSO), jellyfish optimizer (JS), and forensic-based optimizer (FBI), besides the basic versions of MPA and SMA. For unbiased comparison, several statistical analyses and non-parametric tests are applied. The convergence curves are used to evaluate the convergence property of the proposed algorithm compared to their counterparts. The HMPA confirms its efficiency in handling the complex multi-modal and multi-dimensional optimization process of identifying the TDM parameters. HMPA provides the least root mean square error (RMSE) between the measured and estimated datasets with the least standard deviation (STD). For Canadian Solar (CS6P-240P) module, the proposed HMPA achieves the minimum RMSE of 0.00037313 with STD of 0.0030488; for Kyocera Solar (KC200GT) module, HMPA attains RMSE ± STD of 0.0033042 ± 0.0061813. For SharpNU-(Q250W2) PV module and Pythagoras Solar Large PVGU Window, HMPA outperforms the other counterparts with RMSEs ± STDs of 0.00027661 ± 0.0053002 and 0.00285 ± 0.0020075, respectively. Accordingly, the HMPA provides the slightest deviation between the estimated datasets and the experimental ones with high consistency over several independent runs. The convergence curves of the proposed HMPA affirm its fast response while handling the optimization problem of TDM. The reliability of the identified parameters is tested to emulate the PV modules’ characteristics at different irradiation levels. Furthermore, the robustness of the identified parameters is examined for integrated systems of series string and series–parallel arrays under partial shading conditions. The PV solar modules/strings/arrays characteristics confirm the accuracy of the identified parameters as the attained main points on the characteristics are defined with high quality.

[1]  Samir Moulahoum,et al.  An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm , 2019, Renewable Energy.

[2]  Mohammed A. A. Al-qaness,et al.  Reliable applied objective for identifying simple and detailed photovoltaic models using modern metaheuristics: Comparative study , 2020 .

[3]  Seyedali Mirjalili,et al.  Equilibrium optimizer: A novel optimization algorithm , 2020, Knowl. Based Syst..

[4]  Wenyin Gong,et al.  An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models , 2020, Energy Conversion and Management.

[5]  Qi Cao,et al.  Detection of Abnormal Status of PV Modules at PV Stations with Complex Installation Conditions , 2020, 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2).

[6]  Ali Kareem Abdulrazzaq,et al.  Evaluation of different methods for solar cells/modules parameters extraction , 2020 .

[7]  Hui Du,et al.  A Linear Identification of Diode Models from Single I-V Characteristics of PV Panels , 2015, IEEE Trans. Ind. Electron..

[8]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.

[9]  Fabricio Bradaschia,et al.  Parameter Estimation Method to Improve the Accuracy of Photovoltaic Electrical Model , 2016, IEEE Journal of Photovoltaics.

[10]  Chandima Gomes,et al.  Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method , 2021 .

[11]  Shanshan Chen,et al.  Photovoltaic cells parameters extraction using variables reduction and improved shark optimization technique , 2020 .

[12]  Seyed Mostafa Bozorgi,et al.  IWOA: An improved whale optimization algorithm for optimization problems , 2019, J. Comput. Des. Eng..

[13]  Marcello Artioli,et al.  Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis , 2010 .

[14]  Teymoor Ghanbari,et al.  Adaptive Estimation Approach for Parameter Identification of Photovoltaic Modules , 2017, IEEE Journal of Photovoltaics.

[15]  Krishna Busawon,et al.  Wind-Driven Optimization Technique for Estimation of Solar Photovoltaic Parameters , 2018, IEEE Journal of Photovoltaics.

[16]  Jui-Sheng Chou,et al.  A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean , 2021, Appl. Math. Comput..

[17]  A. Chatterjee,et al.  Identification of Photovoltaic Source Models , 2011, IEEE Transactions on Energy Conversion.

[18]  Huiling Chen,et al.  Slime mould algorithm: A new method for stochastic optimization , 2020, Future Gener. Comput. Syst..

[19]  R. Sowmya,et al.  A new metaphor-less algorithms for the photovoltaic cell parameter estimation , 2020 .

[20]  Francisco Jurado,et al.  Guidelines for Protection against Overcurrent in Photovoltaic Generators , 2012 .

[21]  Jing Zhang,et al.  Winner-leading competitive swarm optimizer with dynamic Gaussian mutation for parameter extraction of solar photovoltaic models , 2020 .

[22]  Rabeh Abbassi,et al.  Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach , 2020, Energy.

[23]  Amir H. Gandomi,et al.  Marine Predators Algorithm: A nature-inspired metaheuristic , 2020, Expert Syst. Appl..

[24]  Manish Kumar,et al.  An efficient parameters extraction technique of photovoltaic models for performance assessment , 2017 .

[25]  Ramzi Ben Messaoud Extraction of uncertain parameters of single and double diode model of a photovoltaic panel using Salp Swarm algorithm , 2020 .

[26]  N. Rajasekar,et al.  A novel objective function with artificial ecosystem-based optimization for relieving the mismatching power loss of large-scale photovoltaic array , 2020, Energy Conversion and Management.

[27]  Ümit Çiğdem Turhal,et al.  Discriminative common vector in sufficient data Case: A fault detection and classification application on photovoltaic arrays , 2021 .

[28]  Wenyin Gong,et al.  Reinforcement learning-based differential evolution for parameters extraction of photovoltaic models , 2021 .

[29]  B. Sharmila,et al.  Classification and Detection Techniques of Fault in Solar PV System: A Review , 2021 .

[30]  Mujahed Al-Dhaifallah,et al.  A robust parameter estimation approach based on stochastic fractal search optimization algorithm applied to solar PV parameters , 2021 .

[31]  Liying Wang,et al.  Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications , 2020, Eng. Appl. Artif. Intell..

[32]  Xiao-Zhi Gao,et al.  MPPCEDE: Multi-population parallel co-evolutionary differential evolution for parameter optimization , 2021 .

[33]  Xuehua Zhao,et al.  Evolutionary shuffled frog leaping with memory pool for parameter optimization , 2021 .

[34]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[35]  Jianjun Jiao,et al.  Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of PV model , 2020, Eng. Appl. Artif. Intell..

[36]  H. H. Zeineldin,et al.  A Simple Approach to Modeling and Simulation of Photovoltaic Modules , 2012, IEEE Transactions on Sustainable Energy.

[37]  Hany M. Hasanien,et al.  Transient search optimization for electrical parameters estimation of photovoltaic module based on datasheet values , 2020 .

[38]  Essam H. Houssein,et al.  Gradient-Based Optimizer for Parameter Extraction in Photovoltaic Models , 2021, IEEE Access.

[39]  T. Fuyuki,et al.  Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration , 2007 .

[40]  Mithulananthan Nadarajah,et al.  An improved wind driven optimization algorithm for parameters identification of a triple-diode photovoltaic cell model , 2020 .

[41]  Hany M. Hasanien,et al.  Parameters estimation of single‐ and multiple‐diode photovoltaic model using whale optimisation algorithm , 2018, IET Renewable Power Generation.

[42]  Dalia Yousri,et al.  Fractional chaos maps with flower pollination algorithm for chaotic systems’ parameters identification , 2020, Neural Computing and Applications.

[43]  Ahmed Fathy,et al.  Identifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem‐based optimization approach , 2020, International Journal of Energy Research.

[44]  Jui-Sheng Chou,et al.  FBI inspired meta-optimization , 2020, Appl. Soft Comput..

[45]  F. Jurado,et al.  Assessment of Shading Effects in Photovoltaic Modules , 2011, 2011 Asia-Pacific Power and Energy Engineering Conference.

[46]  Attia A. El-Fergany,et al.  Parameters identification of PV model using improved slime mould optimizer and Lambert W-function , 2021 .

[47]  Dinesh C. S. Bisht,et al.  A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm , 2015 .

[48]  M. Ouhrouche,et al.  Maximum likelihood parameters estimation of single-diode model of photovoltaic generator , 2019, Renewable Energy.

[49]  Ngoc Son Nguyen,et al.  Parameters extraction of solar cells using modified JAYA algorithm , 2020 .

[50]  N. Rajasekar,et al.  Parameter extraction of solar PV double diode model using artificial immune system , 2015, 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES).

[51]  Ragab A. El-Sehiemy,et al.  A Forensic-Based Investigation Algorithm for Parameter Extraction of Solar Cell Models , 2021, IEEE Access.

[52]  Vigna K. Ramachandaramurthy,et al.  Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters , 2020 .

[53]  Vinod John,et al.  Sequential Optimization for PV Panel Parameter Estimation , 2016, IEEE Journal of Photovoltaics.

[54]  Hany M. Hasanien,et al.  Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization , 2020 .

[55]  Kashif Ishaque,et al.  Simple, fast and accurate two-diode model for photovoltaic modules , 2011 .

[56]  Ming Xu,et al.  A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models , 2020, Energy Conversion and Management.

[57]  Pradeep Jangir,et al.  Identification of Solar Photovoltaic Model Parameters Using an Improved Gradient-Based Optimization Algorithm With Chaotic Drifts , 2021, IEEE Access.