Numerical solution of ATS + SA + Q = 0
暂无分享,去创建一个
[1] R. A. Smith. Matrix Equation $XA + BX = C$ , 1968 .
[2] E. Davison,et al. The numerical solution of A'Q+QA =-C , 1968 .
[3] Antony Jameson,et al. Solution of the Equation $AX + XB = C$ by Inversion of an $M \times M$ or $N \times N$ Matrix , 1968 .
[4] D. Kleinman. On an iterative technique for Riccati equation computations , 1968 .
[5] L. Shieh,et al. A note on expanding PA + A^{T}P= -Q , 1968 .
[6] Richard Bellman,et al. Introduction to Matrix Analysis , 1972 .
[7] C. Storey,et al. The Liapunov matrix equation and Schwarz's form , 1967 .
[8] Antony Jameson,et al. Comparison of four numerical algorithms for solving the Liapunov matrix equation , 1970 .
[9] C. Storey,et al. Some Applications of the Lyapunov Matrix Equation , 1968 .
[10] C. Storey,et al. Remarks on numerical solution of the Lyapunov matrix equation , 1967 .
[11] D. Faddeev,et al. Computational Methods of Linear Algebra , 1959 .
[12] P. Müller,et al. Die Berechnung von Ljapunov-Funktionen und von quadratischen Regelflächen für lineare, stetige, zeitinvariante Mehrgrößensysteme , 1969 .
[13] J. Potter. Matrix Quadratic Solutions , 1966 .
[14] P. Parks. A new proof of the Hurwitz stability criterion by the second method of Liapunov, with applications to "Optimum" transfer functions , 1963 .
[15] D. Luenberger. Observers for multivariable systems , 1966 .
[16] C. Storey,et al. Insensitivity of Optimal Linear Control Systems to Persistent Changes in Parameters , 1966 .
[17] S. Bingulac. An alternate approach to expanding PA+A'P=-Q , 1970 .
[18] B. Anderson. An algebraic solution to the spectral factorization problem , 1967, IEEE Transactions on Automatic Control.
[19] K. Åström. Introduction to Stochastic Control Theory , 1970 .
[20] R. A. Smith,et al. Matrix calculations for Liapunov quadratic forms , 1966 .
[21] B. P. Molinari,et al. Algebraic solution of matrix linear equations in control theory , 1969 .
[22] Er-Chieh Ma. A Finite Series Solution of the Matrix Equation $AX - XB = C$ , 1966 .
[23] Antony Jameson,et al. SOLUTION OF EQUATION AX + XB = C BY INVERSION OF AN M × M OR N × N MATRIX ∗ , 1968 .
[24] G. Forsythe,et al. Computer solution of linear algebraic systems , 1969 .
[25] O. Taussky. Matrices C with Cn → 0 , 1964 .