2D Tin Monoxide—An Unexplored p‐Type van der Waals Semiconductor: Material Characteristics and Field Effect Transistors

2D materials are considered promising candidates for developing next-generation high-performance energy efficient electronic, optoelectronic, and valley-tronic devices. Though metal oxides are widely used in the fabrication of many advanced devices, very little work has been reported on their properties in 2D limit. This article reports the discovery of a new 2D materials system, 2D tin monoxide (SnO). Layer by layer growth of SnO on sapphire and SiO2 substrates is demonstrated using a pulsed laser deposition method. The number of SnO layers is controlled by controlling the number of laser shots during the deposition process. Raman spectroscopic and X-ray photoelectron spectroscopic analysis confirms the formation of phase pure SnO layers. Field effect transistors (FETs) using few layer SnO channels grown on SiO2 substrates are successfully fabricated. These FETs show typical p-channel conduction with field effect mobility ranging from 0.05 to 1.9 cm2 V−1 s−1. Field effect mobility varies with the number of SnO layers and decreases on either sides of the optimum layer numbers (12), which is explained based on charge screening and interlayer coupling in layered materials.

[1]  X. Pan,et al.  Tin Oxide Thin Films Grown on the (1012) Sapphire Substrate , 2001 .

[2]  Y. Yamaguchi,et al.  Photoemission study of the interaction of a reduced thin film SnO2 with oxygen , 1999 .

[3]  G. Korotcenkov,et al.  XPS and TPD study of Rh/SnO2 system – Reversible process of substrate oxidation and reduction , 2006 .

[4]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[5]  Chen,et al.  C60 and C70 fullerenes and potassium fullerides. , 1992, Physical review. B, Condensed matter.

[6]  A. Molina-Sanchez,et al.  単層および少数層のMoS 2 とWS 2 のフォノン , 2011 .

[7]  W. Lu,et al.  Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities , 2012 .

[8]  Peter Sutter,et al.  Tin disulfide-an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. , 2014, ACS nano.

[9]  M. Knupfer,et al.  Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron, or correlation physics? , 2012, The Journal of chemical physics.

[10]  Zhixian Zhou,et al.  Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. , 2013, ACS nano.

[11]  J. Robertson,et al.  Limits to doping in oxides , 2011 .

[12]  Hao Luo,et al.  Tunable crystallographic grain orientation and Raman fingerprints of polycrystalline SnO thin films , 2015 .

[13]  Andras Kis,et al.  Electron and hole mobilities in single-layer WSe2. , 2014, ACS nano.

[14]  Hao‐Su Luo,et al.  The structural, optical and electrical properties of Y-doped SnO thin films and their p-type TFT application , 2012 .

[15]  J. Woicik,et al.  Origin of the Bipolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional Theory , 2013 .

[16]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[17]  F. Zhuge,et al.  Determination of some basic physical parameters of SnO based on SnO/Si pn heterojunctions , 2015 .

[18]  Isao Tanaka,et al.  First-principles calculations of native defects in tin monoxide , 2006 .

[19]  B. Partoens,et al.  van der Waals bonding and the quasiparticle band structure of SnO from first principles , 2013 .

[20]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[21]  Hideo Hosono,et al.  Ambipolar Oxide Thin‐Film Transistor , 2011, Advanced materials.

[22]  Andras Kis,et al.  Single-layer MoS2 electronics. , 2015, Accounts of chemical research.

[23]  Steffen,et al.  Magnetothermoelectric properties of Bi2Se3 , 2012, 1209.1312.

[24]  A. Locatelli,et al.  Spectromicroscopy for addressing the surface and electron transport properties of individual 1-d nanostructures and their networks. , 2008, ACS nano.

[25]  F. Izumi Pattern-fitting structure refinement of tin(II) oxide , 1981 .

[26]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[27]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[28]  Hao Luo,et al.  Control of Ambipolar Transport in SnO Thin-Film Transistors by Back-Channel Surface Passivation for High Performance Complementary-like Inverters. , 2015, ACS applied materials & interfaces.

[29]  S. Seal,et al.  Recent development in 2D materials beyond graphene , 2015 .

[30]  I. Lefebvre,et al.  Electronic structure of tin monochalcogenides from SnO to SnTe , 1998 .

[31]  M. Moreno,et al.  Calculated static and dynamic properties of β-Sn and Sn-O compounds , 1993 .

[32]  Hideo Hosono,et al.  p-channel thin-film transistor using p-type oxide semiconductor, SnO , 2008 .

[33]  T. Kamiya,et al.  Bipolar Conduction in SnO Thin Films , 2011 .

[34]  T. Sasaki,et al.  Semiconductor Nanosheet Crystallites of Quasi-TiO2 and Their Optical Properties , 1997 .

[35]  Husam N. Alshareef,et al.  Record mobility in transparent p-type tin monoxide films and devices by phase engineering. , 2013, ACS nano.

[36]  W. Richter,et al.  SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies , 1984 .

[37]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .

[38]  D. Scanlon,et al.  Understanding the defect chemistry of tin monoxide , 2013 .

[39]  J. Appenzeller,et al.  Screening and interlayer coupling in multilayer MoS2 , 2013 .

[40]  G. Watson The origin of the electron distribution in SnO , 2001 .

[41]  Dorota Koziej,et al.  XPS study of the L-CVD deposited SnO2 thin films exposed to oxygen and hydrogen , 2001 .

[42]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[43]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[44]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Chung,et al.  Carrier confinement and special crystallite dimensions in layered semiconductor colloids. , 1986, Physical review. B, Condensed matter.

[46]  Hideo Hosono,et al.  Tin monoxide as an s‐orbital‐based p‐type oxide semiconductor: Electronic structures and TFT application , 2009 .

[47]  K. Saji,et al.  Tin Oxide Based P and N-Type Thin Film Transistors Developed by RF Sputtering , 2015 .

[48]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[49]  J. Pannetier,et al.  Tin(II) oxide: structure refinement and thermal expansion , 1980 .

[50]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[51]  Sang-Hun Song,et al.  High Performance p-type SnO thin-film Transistor with SiO x Gate Insulator Deposited by Low-Temperature PECVD Method , 2014 .

[52]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[53]  Moreno,et al.  Mössbauer study of SnO lattice dynamics. , 1994, Physical review. B, Condensed matter.

[54]  S. C. Parker,et al.  Tin Monoxide: Structural Prediction from First Principles Calculations with van der Waals Corrections , 2011 .