Revisiting reachability in timed automata

We revisit a fundamental result in real-time verification, namely that the binary reachability relation between configurations of a given timed automaton is definable in linear arithmetic over the integers and reals. In this paper we give a new and simpler proof of this result, building on the well-known reachability analysis of timed automata involving difference bound matrices. Using this new proof, we give an exponential-space procedure for model checking the reachability fragment of the logic parametric TCTL. Finally we show that the latter problem is NEXPTIME-hard.

[1]  Anthony Widjaja To Model checking FO(R) over one-counter processes and beyond , 2009, CSL 2009.

[2]  Ahmed Bouajjani,et al.  Symbolic Techniques for Parametric Reasoning about Counter and Clock Systems , 2000, CAV.

[3]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[4]  Jeanne Ferrante,et al.  A Decision Procedure for the First Order Theory of Real Addition with Order , 1975, SIAM J. Comput..

[5]  Zhe Dang,et al.  Pushdown timed automata: a binary reachability characterization and safety verification , 2001, Theor. Comput. Sci..

[6]  Véronique Bruyère,et al.  Durations and parametric model-checking in timed automata , 2008, TOCL.

[7]  Mihalis Yannakakis,et al.  A Note on Succinct Representations of Graphs , 1986, Inf. Control..

[8]  Eduardo D. Sontag,et al.  Real Addition and the Polynomial Hierarchy , 1985, Inf. Process. Lett..

[9]  Volker Weispfenning,et al.  The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.

[10]  Véronique Bruyère,et al.  Durations, Parametric Model-Checking in Timed Automata with Presburger Arithmetic , 2003, STACS.

[11]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[12]  Wang Yi,et al.  Timed Automata: Semantics, Algorithms and Tools , 2003, Lectures on Concurrency and Petri Nets.

[13]  Andrew Martinez Efficient Computation of Regular Expressions from Unary NFAs , 2002, DCFS.

[14]  Leonard Berman,et al.  The Complexity of Logical Theories , 1980, Theor. Comput. Sci..

[15]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[16]  Hubert Comon-Lundh,et al.  Timed Automata and the Theory of Real Numbers , 1999, CONCUR.

[17]  Catalin Dima,et al.  Computing reachability relations in timed automata , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[18]  Patricia Bouyer,et al.  Untameable Timed Automata! , 2003, STACS.

[19]  F. Vaandrager,et al.  Linear Parametric Model Checking of Timed Automata , 2001 .

[20]  Paul Gastin,et al.  Characterization of the Expressive Power of Silent Transitions in Timed Automata , 1998, Fundam. Informaticae.

[21]  Alain Finkel,et al.  Reversal-Bounded Counter Machines Revisited , 2008, MFCS.

[22]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.