Sequential convex relaxation for convex optimization with bilinear matrix equalities

We consider the use of the nuclear norm operator, and its tendency to produce low rank results, to provide a convex relaxation of Bilinear Matrix Inequalities (BMIs). The BMI is first written as a Linear Matrix Inequality (LMI) subject to a bi-affine equality constraint and subsequently rewritten into an LMI subject to a rank constraint on a matrix affine in the decision variables. The convex nuclear norm operator is used to relax this rank constraint. We provide an algorithm that iteratively improves on the sum of the objective function and the norm of the equality constraint violation. The algorithm is demonstrated on a controller synthesis example.

[1]  Alan L. Yuille,et al.  The Concave-Convex Procedure , 2003, Neural Computation.

[2]  Stephen P. Boyd,et al.  A path-following method for solving BMI problems in control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[3]  Michael Stingl,et al.  PENNON: A code for convex nonlinear and semidefinite programming , 2003, Optim. Methods Softw..

[4]  H. Tuy,et al.  D.C. optimization approach to robust control: Feasibility problems , 2000 .

[5]  Masakazu Kojima,et al.  Branch-and-Cut Algorithms for the Bilinear Matrix Inequality Eigenvalue Problem , 2001, Comput. Optim. Appl..

[6]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[7]  Michael G. Safonov,et al.  Global optimization for the Biaffine Matrix Inequality problem , 1995, J. Glob. Optim..

[8]  Young-Hyun Moon,et al.  Technical communique: Structurally constrained H2 and H∞ control: A rank-constrained LMI approach , 2006 .

[9]  M. Tomizuka,et al.  Rank minimization approach for solving BMI problems with random search , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[10]  G. Papavassilopoulos,et al.  A global optimization approach for the BMI problem , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[11]  S. Hara,et al.  Global optimization for H∞ control with constant diagonal scaling , 1998, IEEE Trans. Autom. Control..

[12]  O. Toker,et al.  On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[13]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[14]  Pierre Apkarian,et al.  Non Linear Spectral SDP Method for BMI-Constrained Problems: Applications to Control Design , 2004, ICINCO.

[15]  Michel Verhaegen,et al.  Robust output-feedback controller design via local BMI optimization , 2004, Autom..

[16]  E. Ostertag,et al.  An Improved Path-Following Method for Mixed ${H} _{2} /{H}_{\infty}$ Controller Design , 2008, IEEE Transactions on Automatic Control.

[17]  Izumi Masubuchi,et al.  LMI-based controller synthesis: A unified formulation and solution , 1998 .

[18]  T. Iwasaki The dual iteration for fixed order control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[19]  T. Markham,et al.  A Generalization of the Schur Complement by Means of the Moore–Penrose Inverse , 1974 .

[20]  C. Scherer,et al.  Linear Matrix Inequalities in Control , 2011 .

[21]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[22]  Xuelong Li,et al.  Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Christopher King Inequalities for Trace Norms of 2 × 2 Block Matrices , 2003 .