Maximum variance projections for face recognition

Maximum variance projection (MVP), as a novel subspace learning algorithm, is proposed. It is a linear discriminant algorithm that preserves local information by capturing the local geometry of the manifold. Two abilities of manifold learning and classification are combined into the properties of our algorithm. Since face images often belong to a submanifold of intrinsically low dimension, we carry out the MVP algorithm for face manifold learning and classification. Several experiments show the effectiveness of our developed algorithm.

[1]  Jorma Laaksonen Local Subspace Classifier , 1997, ICANN.

[2]  S. Rosenberg The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .

[3]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[4]  A. Martínez,et al.  The AR face databasae , 1998 .

[5]  Xiaoou Tang,et al.  Dual-space linear discriminant analysis for face recognition , 2004, CVPR 2004.

[6]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[7]  D. D. Ridder,et al.  Locally linear embedding for classification , 2002 .

[8]  H. Sebastian Seung,et al.  The Manifold Ways of Perception , 2000, Science.

[9]  Aziz Umit Batur,et al.  Linear subspaces for illumination robust face recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Amnon Shashua,et al.  Manifold pursuit: a new approach to appearance based recognition , 2002, Object recognition supported by user interaction for service robots.

[11]  Deli Zhao,et al.  Linear local tangent space alignment and application to face recognition , 2007, Neurocomputing.

[12]  P. Jonathon Phillips,et al.  Support Vector Machines Applied to Face Recognition , 1998, NIPS.

[13]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[14]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[15]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[16]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[17]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[18]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[19]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[20]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[21]  Ashok Samal,et al.  Automatic recognition and analysis of human faces and facial expressions: a survey , 1992, Pattern Recognit..

[22]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[24]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.