Massively Parallel Simulated Annealing and Its Relation to Evolutionary Algorithms

Simulated annealing and single-trial versions of evolution strategies possess a close relationship when they are designed for optimization over continuous variables. Analytical investigations of their differences and similarities lead to a cross-fertilization of both approaches, resulting in new theoretical results, new parallel population-based algorithms, and a better understanding of the interrelationships.

[1]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[2]  L. Haines The application of the annealing algorithm to the construction of exact optimal designs for linear-regression models , 1987 .

[3]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[4]  Heinz Mühlenbein,et al.  Evolution algorithms in combinatorial optimization , 1988, Parallel Comput..

[5]  Chiang Tzuu-Shuh,et al.  On the convergence rate of annealing processes , 1988 .

[6]  Hans-Paul Schwefel,et al.  Evolutionary Programming and Evolution Strategies: Similarities and Differences , 1993 .

[7]  J´nos Pintér,et al.  Convergence properties of stochastic optimization procedures , 1984 .

[8]  Martina Gorges-Schleuter,et al.  ASPARAGOS An Asynchronous Parallel Genetic Optimization Strategy , 1989, ICGA.

[9]  H. Haario,et al.  Simulated annealing process in general state space , 1991, Advances in Applied Probability.

[10]  M. E. Johnson,et al.  Generalized simulated annealing for function optimization , 1986 .

[11]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[12]  L. Wille Minimum-energy configurations of atomic clusters: new results obtained by simulated annealing , 1987 .

[13]  G. Rappl On Linear Convergence of a Class of Random Search Algorithms , 1989 .

[14]  Daniel R. Greening,et al.  Parallel simulated annealing techniques , 1990 .

[15]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[16]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[17]  Gnter Rudolph,et al.  Parallel Approaches to Stochastic Global Optimization , 1992 .

[18]  Frank Hoffmeister,et al.  Scalable Parallelism by Evolutionary Algorithms , 1991 .

[19]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[20]  L T Wille,et al.  Electrostatic energy minimisation by simulated annealing , 1985 .

[21]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[22]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[23]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[24]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[25]  Bernard Manderick,et al.  A Massively Parallel Genetic Algorithm: Implementation and First Analysis , 1991, ICGA.

[26]  S. Mitter,et al.  Weak convergence of Markov chain sampling methods and annealing algorithms to diffusions , 1991 .

[27]  Martina Gorges-Schleuter,et al.  Comparison of Local Mating Strategies in Massively Parallel Genetic Algorithms , 1992, PPSN.

[28]  Steven G. Louie,et al.  A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .

[29]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[30]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[31]  Michael E. Palmer,et al.  Improved Evolutionary Optimization of Difficult Landscapes: Control of Premature Convergence through Scheduled Sharing , 1991, Complex Syst..

[32]  A. Khachaturyan Statistical mechanics approach in minimizing a multivariable function , 1986 .

[33]  Luc Devroye,et al.  Progressive global random search of continuous functions , 1978, Math. Program..

[34]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[35]  Robert L. Smith,et al.  Pure adaptive search in global optimization , 1992, Math. Program..

[36]  F. Aluffi-Pentini,et al.  Global optimization and stochastic differential equations , 1985 .

[37]  Claude J. P. Bélisle Convergence theorems for a class of simulated annealing algorithms on ℝd , 1992 .

[38]  Georg Rappl,et al.  Konvergenzraten von Random-Search-Verfahren zur globalen Optimierung , 1984 .

[39]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[40]  H. Szu,et al.  Nonconvex optimization by fast simulated annealing , 1987, Proceedings of the IEEE.

[41]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[42]  T. Chiang,et al.  On the convergence rate of annealing processes , 1987 .