Realistic computable error bounds for three dimensional finite element analyses in linear elasticity
暂无分享,去创建一个
[1] Mark Ainsworth,et al. A Posteriori Error Estimation for Discontinuous Galerkin Finite Element Approximation , 2007, SIAM J. Numer. Anal..
[2] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[3] Hiroya Ito,et al. Best constants in Korn-Poincaré's inequalities on a slab , 1994 .
[4] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[5] Patrick Amestoy,et al. Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..
[6] Erwin Stein,et al. A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems , 1998 .
[7] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[8] T. Strouboulis,et al. Practical aspects of a-posteriori estimation for reliable finite element analysis 1 Dedicated to Pro , 1998 .
[9] Carsten Carstensen,et al. A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.
[10] Patrick Amestoy,et al. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..
[11] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[12] Pierre Beckers,et al. Pure equilibrium tetrahedral finite elements for global error estimation by dual analysis , 2010 .
[13] E. J. Ryzhak. Korn's Constant for a Parallelepiped with a Free Face or Pair of Faces , 1999 .
[14] Pierre Ladevèze,et al. ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .
[15] L. Demkowicz,et al. Analysis of the equilibrated residual method for a posteriori error estimation on meshes with hanging nodes , 2007 .
[16] Cornelius O. Horgan,et al. On inequalities of Korn, Friedrichs and Babuška-Aziz , 1983 .
[17] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .
[18] J. P. Moitinho de Almeida,et al. A SET OF HYBRID EQUILIBRIUM FINITE ELEMENT MODELS FOR THE ANALYSIS OF THREE-DIMENSIONAL SOLIDS , 1996 .
[19] C. P. Gupta,et al. A family of higher order mixed finite element methods for plane elasticity , 1984 .
[20] Hideomi Ohtsubo,et al. Element by element a posteriori error estimation and improvement of stress solutions for two‐dimensional elastic problems , 1990 .
[21] B. J. Hartz,et al. An equilibrium stress field model for finite element solutions of two-dimensional elastostatic problems , 1968 .
[22] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[23] Pierre Ladevèze,et al. Mastering Calculations in Linear and Nonlinear Mechanics , 2004 .
[24] Philippe Marin,et al. Accuracy and optimal meshes in finite element computation for nearly incompressible materials , 1992 .
[25] Serge Nicaise,et al. An a posteriori error estimator for the Lamé equation based on equilibrated fluxes , 2007 .
[26] M. Bebendorf. A Note on the Poincaré Inequality for Convex Domains , 2003 .
[27] R. Verfürth. A review of a posteriori error estimation techniques for elasticity problems , 1999 .
[28] Cornelius O. Horgan,et al. Korn's Inequalities and Their Applications in Continuum Mechanics , 1995, SIAM Rev..
[29] M. Ainsworth,et al. Guaranteed computable error bounds for conforming and nonconforming finite element analyses in planar elasticity , 2010 .
[30] Roland Glowinski,et al. Energy methods in finite element analysis , 1980 .
[31] Pierre Ladevèze,et al. Local error estimator for stresses in 3D structural analysis , 2001 .
[32] Design of Structural Continua by Finite Element Analysis of Equilibrium Models , 1983 .
[33] M. Kitamura,et al. Element by element a posteriori error estimation of the finite element analysis for three‐dimensional elastic problems , 1992 .