Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR

Sterol regulatory element-binding protein-1c (SREBP-1c) enhances transcription of genes encoding enzymes of unsaturated fatty acid biosynthesis in liver. SREBP-1c mRNA is known to increase when cells are treated with agonists of liver X receptor (LXR), a nuclear hormone receptor, and to decrease when cells are treated with unsaturated fatty acids, the end products of SREBP-1c action. Here we show that unsaturated fatty acids lower SREBP-1c mRNA levels in part by antagonizing the actions of LXR. In cultured rat hepatoma cells, arachidonic acid and other fatty acids competitively inhibited activation of the endogenous SREBP-1c gene by an LXR ligand. Arachidonate also blocked the activation of a synthetic LXR-dependent promoter in transfected human embryonic kidney-293 cells. In vitro, arachidonate and other unsaturated fatty acids competitively blocked activation of LXR, as reflected by a fluorescence polarization assay that measures ligand-dependent binding of LXR to a peptide derived from a coactivator. These data offer a potential mechanism that partially explains the long-known ability of dietary unsaturated fatty acids to decrease the synthesis and secretion of fatty acids and triglycerides in livers of humans and other animals.

[1]  Manabu T. Nakamura,et al.  Polyunsaturated Fatty Acids Suppress Hepatic Sterol Regulatory Element-binding Protein-1 Expression by Accelerating Transcript Decay* , 2001, The Journal of Biological Chemistry.

[2]  J. Horton,et al.  Insulin inhibits transcription of IRS-2 gene in rat liver through an insulin response element (IRE) that resembles IREs of other insulin-repressed genes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Brown,et al.  Expression of sterol regulatory element-binding protein 1c (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR ligands. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Goldstein,et al.  Unsaturated Fatty Acids Down-regulate SREBP Isoforms 1a and 1c by Two Mechanisms in HEK-293 Cells* , 2001, The Journal of Biological Chemistry.

[5]  Jean-Marc A. Lobaccaro,et al.  Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ , 2000 .

[6]  D. Mangelsdorf,et al.  Role of LXRs in control of lipogenesis. , 2000, Genes & development.

[7]  P. Espenshade,et al.  Transport-Dependent Proteolysis of SREBP Relocation of Site-1 Protease from Golgi to ER Obviates the Need for SREBP Transport to Golgi , 1999, Cell.

[8]  I. Shimomura,et al.  Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. A. Pan,et al.  Sterol Response Element-binding Protein 1c (SREBP1c) Is Involved in the Polyunsaturated Fatty Acid Suppression of Hepatic S14 Gene Transcription* , 1999, The Journal of Biological Chemistry.

[10]  M. Foretz,et al.  Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Hammer,et al.  Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy , 1999, Nature.

[12]  S. Kliewer,et al.  Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Clarke,et al.  Regulation of gene expression by dietary fat. , 1999, Annual review of nutrition.

[14]  T. Osborne,et al.  Polyunsaturated Fatty Acids Decrease Expression of Promoters with Sterol Regulatory Elements by Decreasing Levels of Mature Sterol Regulatory Element-binding Protein* , 1998, The Journal of Biological Chemistry.

[15]  J. Goldstein,et al.  Differential Stimulation of Cholesterol and Unsaturated Fatty Acid Biosynthesis in Cells Expressing Individual Nuclear Sterol Regulatory Element-binding Proteins* , 1998, The Journal of Biological Chemistry.

[16]  R. Hammer,et al.  Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. , 1998, The Journal of clinical investigation.

[17]  David M. Heery,et al.  A signature motif in transcriptional co-activators mediates binding to nuclear receptors , 1997, Nature.

[18]  J. Goldstein,et al.  The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor , 1997, Cell.

[19]  I. Shimomura,et al.  Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. , 1997, The Journal of clinical investigation.

[20]  R. Hammer,et al.  Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. , 1997, The Journal of clinical investigation.

[21]  R. Hammer,et al.  Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. , 1996, The Journal of clinical investigation.

[22]  B. Spiegelman,et al.  ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. , 1996, Genes & development.

[23]  A. Admon,et al.  SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene , 1993, Cell.

[24]  H. Sambrook Molecular cloning : a laboratory manual. Cold Spring Harbor, NY , 1989 .

[25]  D. Smith,et al.  Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. , 1988, Gene.

[26]  A. Wynshaw-Boris,et al.  Identification of a cAMP regulatory region in the gene for rat cytosolic phosphoenolpyruvate carboxykinase (GTP). Use of chimeric genes transfected into hepatoma cells. , 1984, The Journal of biological chemistry.

[27]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[28]  M. Brown,et al.  Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. , 1983, Methods in enzymology.

[29]  M. Brown,et al.  Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. , 1978, The Journal of biological chemistry.