Fast Sted Microscopy with Continuous Wave Fiber Lasers References and Links
暂无分享,去创建一个
S. E. Irvine | Gael Moneron | Volker Westphal | Arnold Giske | Stefan W Hell | Rebecca Medda | R. Tsien | S. Hell | A. Egner | K. Willig | R. Medda | B. Hein | V. Westphal | S. Rizzoli | C. Eggeling | D. Khimich | A. Schönle | J. Keller | C. von Middendorff | V. Belov | C. Ullal | G. Moneron | C. Ringemann | S. Polyakova | Birka Hein | A. Giske | M. Lauterbach | N. Chapochnikov | D. Riedel | S. Hell | B. Harke | F. J. Barrantes | D. A. Zacharias | C. J. Baier | K. Sandhoff | J. S. W. Hell | Wichmann | G Donnert | M. A. Andrei | R. Lührmann | R. Jahn | E Rittweger | K. Y. Han | R R Kellner | A C Meyer | T. Frank | G. Hoch | Y. M. Yarin | T. Moser | C Eggeling | G. Schwarzmann | V Westphal | D. Kamin | B Harke | O Griesbeck | G. S. Baird | R. E. Campbell | B Hein
[1] S. Hell,et al. Subdiffraction resolution in far-field fluorescence microscopy. , 1999, Optics letters.
[2] S. Hell,et al. STED microscopy with continuous wave beams , 2007, Nature Methods.
[3] S. Hell,et al. STED microscopy with a supercontinuum laser source. , 2008, Optics express.
[4] Christian Eggeling,et al. Triplet-relaxation microscopy with bunched pulsed excitation , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.
[5] T. Bonhoeffer,et al. Live-cell imaging of dendritic spines by STED microscopy , 2008, Proceedings of the National Academy of Sciences.
[6] S. Hell,et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.
[7] R. Tsien,et al. Reducing the Environmental Sensitivity of Yellow Fluorescent Protein , 2001, The Journal of Biological Chemistry.
[8] Christian Eggeling,et al. STED microscopy reveals crystal colour centres with nanometric resolution. , 2009 .
[9] Andreas Schönle,et al. Resolution scaling in STED microscopy. , 2008, Optics express.
[10] Volker Westphal,et al. Nanoscale resolution in the focal plane of an optical microscope. , 2005, Physical review letters.
[11] S. Hell,et al. Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy , 2007, Neuroscience.
[12] S. Hell,et al. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell , 2008, Proceedings of the National Academy of Sciences.
[13] Alexander Egner,et al. Tuning of synapse number, structure and function in the cochlea , 2009, Nature Neuroscience.
[14] Stefan W. Hell,et al. Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .
[15] Christian Eggeling,et al. Major signal increase in fluorescence microscopy through dark-state relaxation , 2007, Nature Methods.
[16] S. Hell,et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.
[17] Volker Westphal,et al. A STED microscope aligned by design. , 2009, Optics express.
[18] Christian Eggeling,et al. Macromolecular-scale resolution in biological fluorescence microscopy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[19] S. Hell. Microscopy and its focal switch , 2008, Nature Methods.
[20] S. Hell,et al. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.