The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region

[1]  Yuanhe Yang,et al.  Al/Fe Mineral Controls on Soil Organic Carbon Stock Across Tibetan Alpine Grasslands , 2019, Journal of Geophysical Research: Biogeosciences.

[2]  J. Sanderman Comment on “Climate legacies drive global soil carbon stocks in terrestrial ecosystems” , 2018, Science Advances.

[3]  Y. Sheng,et al.  Soil organic carbon and total nitrogen pools in permafrost zones of the Qinghai-Tibetan Plateau , 2018, Scientific Reports.

[4]  Ming Xu,et al.  Inhibition of insulin resistance by PGE1 via autophagy-dependent FGF21 pathway in diabetic nephropathy , 2018, Scientific Reports.

[5]  Jinzhi Ding,et al.  Decreased Soil Cation Exchange Capacity Across Northern China's Grasslands Over the Last Three Decades , 2017 .

[6]  Guido Grosse,et al.  Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability , 2017 .

[7]  Pete Smith,et al.  Decadal soil carbon accumulation across Tibetan permafrost regions , 2017 .

[8]  P. Reich,et al.  Climate legacies drive global soil carbon stocks in terrestrial ecosystems , 2017, Science Advances.

[9]  Jinsheng He,et al.  Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes , 2017 .

[10]  Lin Zhao,et al.  A new map of permafrost distribution on the Tibetan Plateau , 2016 .

[11]  N. Verhoest,et al.  GLEAM v3: satellite-based land evaporation and root-zone soil moisture , 2016 .

[12]  Pete Smith,et al.  The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores , 2016, Global change biology.

[13]  Atul K. Jain,et al.  NACP MsTMIP: Global 0.5-degree Model Outputs in Standard Format, Version 1.0 , 2016 .

[14]  Tingjun Zhang,et al.  Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau , 2016 .

[15]  X. Kuang,et al.  Review on climate change on the Tibetan Plateau during the last half century , 2016 .

[16]  Steven W. Running,et al.  Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization , 2016 .

[17]  Yujie He,et al.  Toward more realistic projections of soil carbon dynamics by Earth system models , 2016 .

[18]  J. Six,et al.  Soil carbon storage controlled by interactions between geochemistry and climate , 2015 .

[19]  Atul K. Jain,et al.  Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions , 2015, Global biogeochemical cycles.

[20]  Guodong Cheng,et al.  Editorial: Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau , 2015 .

[21]  E. Vivoni,et al.  Legacy effects in linked ecological-soil-geomorphic systems of drylands , 2015 .

[22]  M. Bradford,et al.  Climate history shapes contemporary leaf litter decomposition , 2015, Biogeochemistry.

[23]  D. M. Lawrence,et al.  Climate change and the permafrost carbon feedback , 2014, Nature.

[24]  Guido Grosse,et al.  Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps , 2014 .

[25]  L. Thompson,et al.  A Tibetan lake sediment record of Holocene Indian summer monsoon variability , 2014 .

[26]  W. Post,et al.  The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design , 2013 .

[27]  M. Torn,et al.  The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4 , 2013 .

[28]  Kazuhito Ichii,et al.  Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression , 2013 .

[29]  Stuart Moss,et al.  Current Status and Future Directions , 2013 .

[30]  D. Qin,et al.  Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai–Tibetan Plateau , 2012 .

[31]  Yang-jian Zhang,et al.  Ecological and environmental issues faced by a developing Tibet. , 2012, Environmental science & technology.

[32]  P. Ciais,et al.  Permafrost carbon-climate feedbacks accelerate global warming , 2011, Proceedings of the National Academy of Sciences.

[33]  Fu-qiang Dai,et al.  Temporal variation of soil organic matter content and potential determinants in Tibet, China , 2011 .

[34]  Yan Zhao,et al.  Holocene vegetation and climate histories in the eastern Tibetan Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes? , 2011 .

[35]  M. Wiesmeier,et al.  Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem , 2011, Plant and Soil.

[36]  Meixue Yang,et al.  Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research , 2010 .

[37]  Lin Zhao,et al.  Thermal state of permafrost and active layer in Central Asia during the international polar year , 2010 .

[38]  Thomas Scholten,et al.  Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau , 2009 .

[39]  Guodong Cheng,et al.  Active layer thickness calculation over the Qinghai–Tibet Plateau , 2009 .

[40]  U. Skyllberg,et al.  Cation exchange in forest soils: the need for a new perspective , 2008 .

[41]  Cédric Gaucherel,et al.  The Comparison Map Profile Method: A Strategy for Multiscale Comparison of Quantitative and Qualitative Images , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Yanhong Tang,et al.  Storage, patterns and controls of soil organic carbon in the Tibetan grasslands , 2008 .

[43]  Sébastien Barot,et al.  Stability of organic carbon in deep soil layers controlled by fresh carbon supply , 2007, Nature.

[44]  Sheng’an Wang,et al.  Evolution of permafrost on the Qinghai-Xizang (Tibet) Plateau since the end of the late Pleistocene , 2007 .

[45]  Tingjun Zhang,et al.  Northern Hemisphere freezing/thawing index variations over the twentieth century , 2007 .

[46]  B. Fattouh The Need for a New Perspective , 2007 .

[47]  E. Schuur,et al.  Potential carbon release from permafrost soils of Northeastern Siberia , 2006 .

[48]  Zhao Lin,et al.  Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway , 2006 .

[49]  P. Legendre,et al.  Variation partitioning of species data matrices: estimation and comparison of fractions. , 2006, Ecology.

[50]  Ulrike Groemping,et al.  Relative Importance for Linear Regression in R: The Package relaimpo , 2006 .

[51]  James B. Grace,et al.  Structural Equation Modeling and Natural Systems , 2006 .

[52]  F. Chapin,et al.  Permafrost and the Global Carbon Budget , 2006, Science.

[53]  M. Berelowitz,et al.  A Review of Recent Research , 2006 .

[54]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[55]  K. Paustian,et al.  Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils , 2002, Plant and Soil.

[56]  Changhui Peng,et al.  Distribution and storage of soil organic carbon in China , 2003 .

[57]  Wasserman,et al.  Bayesian Model Selection and Model Averaging. , 2000, Journal of mathematical psychology.

[58]  B. Shipley Cause and correlation in biology , 2000 .

[59]  E. S. Melnikov,et al.  Circum-Arctic map of permafrost and ground-ice conditions , 1997 .

[60]  P. Vitousek,et al.  Mineral control of soil organic carbon storage and turnover , 1997, Nature.

[61]  P. Sollins,et al.  Stabilization and destabilization of soil organic matter: mechanisms and controls , 1996 .

[62]  P. Cour,et al.  Holocene environmental changes in Bangong Co basin (Western Tibet). Part 2: The pollen record , 1996 .

[63]  E. Mosley‐Thompson,et al.  Holocene—Late Pleistocene Climatic Ice Core Records from Qinghai-Tibetan Plateau , 1989, Science.

[64]  P. Sen,et al.  Introduction to bivariate and multivariate analysis , 1981 .