A Center Manifold Result for Delayed Neural Fields Equations

We develop a framework for the study of delayed neural fields equations and prove a center manifold theorem for these equations. Specific properties of delayed neural fields equations make it difficult to apply existing methods from the literature concerning center manifold results for functional differential equations. Our approach for the proof of the center manifold theorem uses the original combination of results from Vanderbauwhede et al. together with a theory of linear functional differential equations in a history space larger than the commonly used set of time-continuous functions.

[1]  Stephen Coombes,et al.  Waves, bumps, and patterns in neural field theories , 2005, Biological Cybernetics.

[2]  D. Hansel,et al.  Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. , 2005, Physical review letters.

[3]  Teresa Faria,et al.  Normal forms for semilinear functional differential equations in Banach spaces and applications. Part II , 2000 .

[4]  A. Bátkai,et al.  Semigroups for Delay Equations , 2005 .

[5]  Axel Hutt,et al.  Stability and Bifurcations in Neural Fields with Finite Propagation Speed and General Connectivity , 2004, SIAM J. Appl. Math..

[6]  Shin-ichi Nakagiri,et al.  Structural properties of functional differential equations in Banach spaces , 1988 .

[7]  Axel Hutt,et al.  Neural Fields with Distributed Transmission Speeds and Long-Range Feedback Delays , 2006, SIAM J. Appl. Dyn. Syst..

[8]  Ingo Bojak,et al.  Axonal Velocity Distributions in Neural Field Equations , 2010, PLoS Comput. Biol..

[9]  O. B. Lykova,et al.  On the reduction principle in the theory of stability of motion , 1993 .

[10]  Alex Roxin,et al.  How effective delays shape oscillatory dynamics in neuronal networks , 2009, 0905.0701.

[11]  S. M. Verduyn Lunel,et al.  Center Manifold Theory for Functional Differential Equations of Mixed Type , 2007 .

[12]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[13]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[14]  Christian Igel,et al.  A Dynamic Neural Field Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive Dye Imaging , 2010, PLoS Comput. Biol..

[15]  S. Gils,et al.  Center manifolds and contractions on a scale of Banach spaces , 1987 .

[16]  Tosio Kato Perturbation theory for linear operators , 1966 .

[17]  Jianhong Wu,et al.  Smoothness of Center Manifolds for Maps and Formal Adjoints for Semilinear FDEs in General Banach Spaces , 2002, SIAM J. Math. Anal..

[18]  Jianhong Wu Theory and Applications of Partial Functional Differential Equations , 1996 .

[19]  Romain Veltz An analytical method for computing Hopf bifurcation curves in neural field networks with space-dependent delays , 2011 .

[20]  Axel Hutt,et al.  Finite Propagation Speeds in Spatially Extended Systems , 2009 .

[21]  Odo Diekmann,et al.  The center manifold for delay equations in the light of suns and stars , 1991 .

[22]  Odo Diekmann,et al.  Perturbation theory for dual semigroups , 1987 .

[23]  Olivier D. Faugeras,et al.  Absolute Stability and Complete Synchronization in a Class of Neural Fields Models , 2008, SIAM J. Appl. Math..

[24]  Paul C Bressloff,et al.  Nonlocal Ginzburg-Landau equation for cortical pattern formation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  André Vanderbauwhede,et al.  Center Manifold Theory in Infinite Dimensions , 1992 .

[26]  Shin-ichi Nakagiri,et al.  Optimal Control of Linear Retarded Systems in Banach Spaces , 1986 .

[27]  D. Liley,et al.  Modeling electrocortical activity through improved local approximations of integral neural field equations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  L. Magalhães,et al.  Normal Forms for Retarded Functional Differential Equations with Parameters and Applications to Hopf Bifurcation , 1995 .

[29]  Bernard D. Coleman,et al.  Norms and semi-groups in the theory of fading memory , 1966 .

[30]  Jack D. Cowan,et al.  Geometric visual hallucinations and the structure of the visual cortex , 2014 .

[31]  Glenn F. Webb,et al.  Functional differential equations and nonlinear semigroups in Lp-spaces , 1976 .

[32]  J. Cowan,et al.  Large Scale Spatially Organized Activity in Neural Nets , 1980 .

[33]  Joshua C. Brumberg,et al.  A quantitative population model of whisker barrels: Re-examining the Wilson-Cowan equations , 1996, Journal of Computational Neuroscience.

[34]  O. Faugeras,et al.  Stability of the stationary solutions of neural field equations with propagation delays , 2011, Journal of mathematical neuroscience.

[35]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[36]  O. Arino,et al.  Delay Differential Equations and Applications , 2006 .

[37]  Olivier D. Faugeras,et al.  Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations , 2009, SIAM J. Appl. Dyn. Syst..

[38]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[39]  O. Arino,et al.  Linear theory of abstract functional differential equations of retarded type , 1995 .

[40]  C. Travis,et al.  Existence and stability for partial functional differential equations , 1974 .

[41]  Paul C. Bressloff,et al.  Dynamical Mechanism for Sharp Orientation Tuning in an Integrate-and-Fire Model of a Cortical Hypercolumn , 2000, Neural Computation.

[42]  J A Kelso,et al.  Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Axel Hutt,et al.  Local excitation-lateral inhibition interaction yields oscillatory instabilities in nonlocally interacting systems involving finite propagation delay , 2008 .

[44]  S. Lunel,et al.  Delay Equations. Functional-, Complex-, and Nonlinear Analysis , 1995 .

[45]  Klaus Kirchgässner,et al.  Travelling Waves in a Chain¶of Coupled Nonlinear Oscillators , 2000 .

[46]  Jianhong Wu SYMMETRIC FUNCTIONAL DIFFERENTIAL EQUATIONS AND NEURAL NETWORKS WITH MEMORY , 1998 .

[47]  M. Golubitsky,et al.  Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.