Analysis of Neptune’s 2017 bright equatorial storm

[1]  R. Hueso,et al.  Simulations of convective storms in Jupiter with an updated version of a three-dimensional model of moist convection , 2020 .

[2]  P. Marcus,et al.  Vertical wind shear in Neptune’s upper atmosphere explained with a modified thermal wind equation , 2018, Icarus.

[3]  G. Orton,et al.  A New Dark Vortex on Neptune , 2018 .

[4]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[5]  T. Encrenaz,et al.  Scientific rationale for Uranus and Neptune in situ explorations , 2017, Planetary and Space Science.

[6]  I. Mendikoa,et al.  Neptune Long-Lived Atmospheric Features in 2013 - 2015 from Small (28-cm) to Large (10-m) Telescopes , 2017, 1709.08854.

[7]  J. F. Rojas,et al.  A planetary‐scale disturbance in the most intense Jovian atmospheric jet from JunoCam and ground‐based observations , 2017 .

[8]  P. Hartogh,et al.  Thermochemistry and vertical mixing in the tropospheres of Uranus and Neptune: How convection inhibition can affect the derivation of deep oxygen abundances , 2017, 1703.04358.

[9]  H. Hammel,et al.  Retrieving Neptune's aerosol properties from Keck OSIRIS observations. I. Dark regions , 2016, 1706.05049.

[10]  Jessica R. Lu,et al.  A New Distortion Solution for NIRC2 on the Keck II Telescope , 2016 .

[11]  G. Orton,et al.  Time variability of Neptune’s horizontal and vertical cloud structure revealed by VLT/SINFONI and Gemini/NIFS from 2009 to 2013 , 2016 .

[12]  H. Rix,et al.  CONSTRUCTING POLYNOMIAL SPECTRAL MODELS FOR STARS , 2016, 1603.06574.

[13]  I. Mendikoa,et al.  PlanetCam UPV/EHU: A Two-channel Lucky Imaging Camera for Solar System Studies in the Spectral Range 0.38–1.7 μm , 2016 .

[14]  Agustin Sanchez-Lavega,et al.  A large active wave trapped in Jupiter's equator , 2016 .

[15]  G. Orton,et al.  FIRST RESULTS FROM THE HUBBLE OPAL PROGRAM: JUPITER IN 2015 , 2015 .

[16]  M. H. Wong A New Dark Vortex , 2015 .

[17]  Jonathan L. Mitchell,et al.  Meridional variation in tropospheric methane on Titan observed with AO spectroscopy at Keck and VLT , 2015, 1509.08835.

[18]  H. Hammel,et al.  Clouds and aerosols on Uranus: Radiative transfer modeling of spatially-resolved near-infrared Keck spectra , 2015 .

[19]  D. Reuter,et al.  Small‐scale waves on Jupiter: A reanalysis of New Horizons, Voyager, and Galileo data , 2015 .

[20]  L. Sromovsky Accurate and approximate calculations of Raman scattering in the atmosphere of Neptune , 2015, 1504.02726.

[21]  G. Orton,et al.  Neptune’s global circulation deduced from multi-wavelength observations , 2014 .

[22]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[23]  H. Hammel,et al.  Dispersion in Neptune’s zonal wind velocities from NIR Keck AO observations in July 2009 , 2013, 1312.2676.

[24]  I. Pater,et al.  Constraining the origins of Neptune’s carbon monoxide abundance with CARMA millimeter-wave observations , 2012, 1301.1990.

[25]  Agustin Sanchez-Lavega,et al.  Episodic bright and dark spots on Uranus , 2012 .

[26]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[27]  S. Calcutt,et al.  Multispectral imaging observations of Neptune’s cloud structure with Gemini-North , 2011 .

[28]  E. Karkoschka Neptune's cloud and haze variations 1994-2008 from 500 HST-WFPC2 images , 2011 .

[29]  M. Showalter,et al.  Post-equinox observations of Uranus: Berg’s evolution, vertical structure, and track towards the equator , 2011 .

[30]  R. Hueso,et al.  Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm , 2011, Nature.

[31]  A. Sánchez-Lavega,et al.  An Introduction to Planetary Atmospheres , 2010 .

[32]  M. Tomasko,et al.  The haze and methane distributions on Uranus from HST-STIS spectroscopy , 2009 .

[33]  B. Gerardot,et al.  The nonlinear Fano effect , 2008, Nature.

[34]  R. Hueso,et al.  Depth of a strong jovian jet from a planetary-scale disturbance driven by storms , 2008, Nature.

[35]  T. Encrenaz,et al.  Compositional constraints on giant planet formation , 2006 .

[36]  L. Sromovsky,et al.  Dynamics of cloud features on Uranus , 2005, 1503.03714.

[37]  Bryan A. Baum,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models. , 2005 .

[38]  R. Hueso,et al.  A three-dimensional model of moist convection for the giant planets II: Saturn's water and ammonia moist convective storms , 2004 .

[39]  A. Sánchez-Lavega,et al.  Clouds in planetary atmospheres: A useful application of the Clausius–Clapeyron equation , 2004 .

[40]  C. Gueymard The sun's total and spectral irradiance for solar energy applications and solar radiation models , 2004 .

[41]  I. Pater,et al.  Near-infrared Adaptive Optics Imaging of the Satellites and Individual Rings of Uranus from the W.M. Keck Observatory , 2004 .

[42]  B. Macintosh,et al.  The altitude of Neptune cloud features from high-spatial-resolution near-infrared spectra , 2003 .

[43]  Bradford A. Smith,et al.  Hubble Space Telescope NICMOS Multiband Photometry of Proteus and Puck , 2003 .

[44]  Wm. A. Wheaton,et al.  VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) , 2003 .

[45]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[46]  E. Karkoschka Sizes, shapes, and albedos of the inner satellites of Neptune , 2003 .

[47]  T. Guillot,et al.  A model for large‐scale convective storms in Jupiter , 2002 .

[48]  K. Baines,et al.  The Unusual Dynamics of Northern Dark Spots on Neptune , 2002 .

[49]  Donald T. Gavel,et al.  Near-Infrared Observations of Neptune’s Tropospheric Cloud Layer with the Lick Observatory Adaptive Optics System , 2001 .

[50]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[51]  R. Hueso,et al.  A Three-Dimensional Model of Moist Convection for the Giant Planets: The Jupiter Case , 2001 .

[52]  E. Karkoschka Comprehensive Photometry of the Rings and 16 Satellites of Uranus with the Hubble Space Telescope , 2001 .

[53]  K. Baines,et al.  Neptune's Atmospheric Circulation and Cloud Morphology: Changes Revealed by 1998 HST Imaging , 2001 .

[54]  K. Baines,et al.  Coordinated 1996 HST and IRTF Imaging of Neptune and Triton: III. Neptune's Atmospheric Circulation and Cloud Structure☆ , 2001 .

[55]  G. Orton,et al.  Coordinated 1996 HST and IRTF Imaging of Neptune and Triton , 2001 .

[56]  Peter J. Webster,et al.  Large-Scale Dynamical Fields Associated with Convectively Coupled Equatorial Waves , 2000 .

[57]  Galileo Imaging Team,et al.  Observation of moist convection in Jupiter's atmosphere , 2000, Nature.

[58]  R. West Clouds in Planetary Atmospheres , 1999 .

[59]  E. Karkoschka Methane, Ammonia, and Temperature Measurements of the Jovian Planets and Titan from CCD–Spectrophotometry , 1998 .

[60]  H. Hammel,et al.  Atmospheric Structure of Neptune in 1994, 1995, and 1996 , 1997 .

[61]  Malcolm J. Northcott,et al.  First ground-based adaptive optics observations of Neptune and Proteus , 1997 .

[62]  R. LeBeau,et al.  EPIC Simulations of Time-Dependent, Three-Dimensional Vortices with Application to Neptune's Great Dark Spot , 1997 .

[63]  S. Limaye,et al.  Clouds and Circulation on Neptune: Implications of 1991 HST Observations , 1995 .

[64]  T. Guillot Condensation of methane, ammonia, and water and the inhibition of convection in giant planets. , 1995, Science.

[65]  E. Karkoschka Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum , 1994 .

[66]  S. Limaye,et al.  Dynamics of Neptune's Major Cloud Features , 1993 .

[67]  J. A. Magalhāes,et al.  Inertio-Gravity Waves in the Atmosphere of Neptune , 1993 .

[68]  G. F. Lindal,et al.  The atmosphere of Neptune : an analysis of radio occultation data acquired with Voyager 2 , 1992 .

[69]  S. Limaye,et al.  Winds of Neptune - Voyager observations of cloud motions , 1991 .

[70]  I. Pater,et al.  Possible microwave absorption by H2S gas in Uranus' and Neptune's atmospheres , 1991 .

[71]  G. E. Wood,et al.  Voyager Radio Science Observations of Neptune and Triton , 1989, Science.

[72]  S. K. Croft,et al.  Voyager 2 at Neptune: Imaging Science Results , 1989, Science.

[73]  C. Stoker,et al.  Moist convection on Neptune , 1989 .

[74]  J. Bergstralh,et al.  Vertical aerosol structure of Neptune: Constraints from center-to-limb profiles , 1989 .

[75]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[76]  E. Battaner,et al.  The nature of Saturn's atmospheric Great White Spots , 1987 .

[77]  C. Stoker Moist convection: A mechanism for producing the vertical structure of the Jovian Equatorial Plumes , 1986 .

[78]  M. Allison Planetary waves in Jupiter's equatorial atmosphere , 1983 .

[79]  E. J. Mccartney,et al.  Optics of the Atmosphere: Scattering by Molecules and Particles , 1977 .

[80]  D. Deirmendjian Scattering and Polarization Properties of Water Clouds and Hazes in the Visible and Infrared , 1964 .

[81]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[82]  G. Orton,et al.  Line-by-line analysis of Neptune's near-IR spectrum observed with Gemini/NIFS and VLT/CRIRES , 2014 .

[83]  P. Marcus,et al.  Neptune’s zonal winds from near-IR Keck adaptive optics imaging in August 2001 , 2011 .

[84]  T. Encrenaz,et al.  Oxygen and Other Volatiles in the Giant Planets and their Satellites , 2008 .

[85]  J. F. Rojas,et al.  Depth of a strong jovian jet from a planetary-scale disturbance driven by storms , 2008, Nature.

[86]  H. Hammel,et al.  Long-term atmospheric variability on Uranus and Neptune , 2007 .

[87]  H. Hammel,et al.  Evolution of the dusty rings of Uranus , 2006 .

[88]  S. Atreya,et al.  Coupled Clouds and Chemistry of the Giant Planets— A Case for Multiprobes , 2005 .

[89]  L. Sromovsky Effects of Rayleigh-scattering polarization on reflected intensity: a fast and accurate approximation method for atmospheres with aerosols , 2005 .

[90]  D. S. Acton,et al.  Cloud Structures on Neptune Observed with Keck Telescope Adaptive Optics , 2003 .

[91]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[92]  T. Matsuno,et al.  Quasi-geostrophic motions in the equatorial area , 1966 .