Primitive Quantum BCH Codes over Finite Fields

An attractive feature of BCH codes is that one can infer valuable information from their design parameters (length, size of the finite field, and designed distance), such as bounds on the minimum distance and dimension of the code. In this paper, it is shown that one can also deduce from the design parameters whether or not a primitive, narrow-sense BCH contains its Euclidean or Hermitian dual code. This information is invaluable in the construction of quantum BCH codes. A new proof is provided for the dimension of BCH codes with small designed distance, and simple bounds on the minimum distance of such codes and their duals are derived as a consequence. These results allow us to derive the parameters of two families of primitive quantum BCH codes as a function of their design parameters

[1]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[2]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[3]  T. Beth,et al.  Cyclic quantum error–correcting codes and quantum shift registers , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[5]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[6]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[7]  Gérard D. Cohen,et al.  On binary constructions of quantum codes , 1999, IEEE Trans. Inf. Theory.

[8]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[9]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[10]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[11]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[12]  Henning Stichtenoth On the dimension of subfield subcodes , 1990, IEEE Trans. Inf. Theory.

[13]  Yue Dianwu,et al.  On the dimension and minimum distance of BCH codes over GF(q) , 1996 .

[14]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[15]  E. Krouk,et al.  Error Correcting Coding and Security for Data Networks: Analysis of the Superchannel Concept , 2007 .

[16]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[17]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.