Experimental Investigation on the Lumped Model of Nonlinear Rocker–Rocker Mechanism With Flexible Coupler

[1]  Cemil Bagci,et al.  Dynamics of Planar, Elastic, High-Speed Mechanisms Considering Three-Dimensional Offset Geometry: Analytical and Experimental Investigations , 1983 .

[2]  P. Holmes,et al.  A periodically forced piecewise linear oscillator , 1983 .

[3]  J. Thompson,et al.  Nonlinear Dynamics and Chaos , 2002 .

[4]  J. R. Bosnik,et al.  Dynamic Analysis of Elastic Mechanism Systems. Part II: Experimental Results , 1984 .

[5]  Jen-San Chen,et al.  Effects of Crank Length on the Dynamics Behavior of a Flexible Connecting Rod , 2001 .

[6]  C. Sung,et al.  An experimental study on the nonlinear elastodynamic response of linkage mechanisms , 1986 .

[7]  Kent L. Lawrence,et al.  Experimentally Determined Dynamic Strains in an Elastic Mechanism , 1975 .

[8]  K. C. Pan,et al.  Dynamic Response of a High-Speed Slider-Crank Mechanism With an Elastic Connecting Rod , 1975 .

[9]  T. E. Shoup,et al.  A survey of flexible link mechanisms having lower pairs , 1971 .

[10]  G. G. Lowen,et al.  The Elastic-Dynamic Behavior of a Counterweighted Rocker Link with an Overhanging Endmass in a Four-Bar Linkage—Part II: Application and Experiment , 1979 .

[11]  Koon-Ho Yang,et al.  Dynamic stability analysis of a flexible four-bar mechanism and its experimental investigation , 1998 .

[12]  Larry L. Howell,et al.  Handbook of compliant mechanisms , 2013 .

[13]  Steven W. Shaw,et al.  The Dynamic Stability and Non-Linear Resonance of a Flexible Connecting Rod: Single-Mode Model , 1994 .

[14]  Frank W. Liou,et al.  Experimental Frequency Response Analysis of Flexible Mechanisms , 1993 .

[15]  K. L. Lawrence,et al.  An Experimental Investigation of the Dynamic Response of an Elastic Mechanism , 1974 .

[16]  Steven W. Shaw,et al.  The dynamic stability and nonlinear resonance of a flexible connecting rod: Continuous parameter model , 1993 .

[17]  Jen-San Chen,et al.  DYNAMIC ANALYSIS OF FLEXIBLE SLIDER-CRANK MECHANISMS WITH NON-LINEAR FINITE ELEMENT METHOD , 2001 .

[18]  G. H. Sutherland Analytical and Experimental Investigation of a High-Speed Elastic-Membered Linkage , 1976 .

[19]  George N Sandor,et al.  A linearized lumped parameter approach to vibration and stress analysis of elastic linkages , 1985 .

[20]  G. N. Sandor,et al.  A Lumped Parameter Approach to Vibration and Stress Analysis of Elastic Linkages , 1973 .

[21]  David G. Beale,et al.  Experimental observations of a flexible slider crank mechanism at very high speeds , 1995 .

[22]  J. Hamilton,et al.  The kinematics of robotic manipulators with flexible links using an equivalent rigid link system (ERLS) model , 1991 .

[23]  Kon-Well Wang,et al.  Excitation-Induced Stability in a Bistable Duffing Oscillator: Analysis and Experiments , 2015 .

[24]  Larry L. Howell,et al.  Handbook of Compliant Mechanisms: Howell/Handbook , 2013 .

[25]  Ho Chong Lee,et al.  Vibrations of Elastic Connecting Rod of a High-Speed Slider-Crank Mechanism , 1971 .

[26]  Alessandro Gasparetto On the Modeling of Flexible-Link Planar Mechanisms: Experimental Validation of an Accurate Dynamic Model , 2004 .

[27]  A. Midha,et al.  Member Initial Curvature Effects on the Elastic Slider-Crank Mechanism Response , 1982 .

[28]  T. S. Sankar,et al.  Bifurcations, catastrophes and chaos in a pre-buckled beam , 1994 .

[29]  Arthur G. Erdman,et al.  Modern kinematics : developments in the last forty years , 1993 .

[30]  G. G. Lowen,et al.  The elastic behavior of linkages: An update , 1986 .

[31]  G. G. Lowen,et al.  The Elastic-Dynamic Behavior of a Counterweighted Rocker Link with an Overhanging Endmass in a Four-Bar Linkage—Part I: Theory , 1979 .

[32]  M. Badlani,et al.  Dynamic Stability of Elastic Mechanisms , 1979 .

[33]  Bingyou Liu,et al.  Vision-based displacement measurement sensor using modified Taylor approximation approach , 2016 .

[34]  Olivier A. Bauchau,et al.  Integration of Large Deformation Finite Element and Multibody System Algorithms , 2007 .

[35]  A. Akay,et al.  Dynamic response of a revolute joint with clearance , 1996 .

[36]  G. N. Sandor,et al.  Stability and Steady-State Vibrations in a High-Speed Slider-Crank Mechanism , 1970 .

[37]  Arthur G. Erdman,et al.  Kineto-elastodynamics - A review of the state of the art and trends , 1972 .

[38]  L. Seneviratne,et al.  Chaotic behaviour exhibited during contact loss in a clearance joint of a four-bar mechanism , 1992 .

[39]  Tamer M. Wasfy,et al.  Computational strategies for flexible multibody systems , 2003 .

[40]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[41]  Sathya Hanagud,et al.  Chaotic Vibrations of Beams: Numerical Solution of Partial Differential Equations , 1993 .

[42]  Iradj G. Tadjbakhsh,et al.  Effect of flexibility on the dynamic stability of a four-bar mechanism , 1985 .

[43]  Jen-San Chen,et al.  On the Nonlinear Response of a Flexible Connecting Rod , 2003 .

[44]  I. Kovacic,et al.  The Duffing Equation: Nonlinear Oscillators and their Behaviour , 2011 .

[45]  Lotfi Romdhane,et al.  Dynamic analysis of a flexible slider-crank mechanism with clearance , 2008 .

[46]  D. Ewins,et al.  Chaotic vibration of mechanical systems with backlash , 1993 .

[47]  Y. Chen,et al.  The Stability of the Motion of a Connecting Rod , 1983 .

[48]  R. C. Winfrey,et al.  Dynamic Analysis of Elastic Link Mechanisms by Reduction of Coordinates , 1972 .

[49]  S. Shaw,et al.  Chaotic and periodic dynamics of a slider-crank mechanism with slider clearance , 1994 .

[50]  J. P. Sadler,et al.  Analytical and Experimental Investigation of Elastic Slider-Crank Mechanisms , 1976 .

[51]  Wanda Szemplińska-Stupnicka,et al.  The analytical predictive criteria for chaos and escape in nonlinear oscillators: A survey , 1995 .

[52]  George N. Sandor,et al.  Deflection and Stress Analysis in High Speed Planar Mechanisms With Elastic Links , 1973 .

[53]  Peter Eberhard,et al.  Computational Dynamics of Multibody Systems: History, Formalisms, and Applications , 2006 .

[54]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[55]  Rolf Isermann,et al.  Identification of Dynamic Systems , 2011 .

[56]  Steven Dubowsky,et al.  THE DESIGN IMPLICATIONS OF CHAOTIC AND NEAR-CHAOTIC VIBRATIONS IN MACHINES , 1998 .

[57]  E. Dowell,et al.  Chaotic Vibrations: An Introduction for Applied Scientists and Engineers , 1988 .

[58]  G. G. Lowen,et al.  Survey of investigations into the dynamic behavior of mechanisms containing links with distributed mass and elasticity , 1972 .

[59]  Mihai Dupac,et al.  Dynamic analysis of a flexible linkage mechanism with cracks and clearance , 2010 .

[60]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[61]  David Allen Turcic,et al.  Dynamic Analysis of Elastic Mechanism Systems. Part I: Applications , 1984 .

[62]  C. J. Younis,et al.  Dynamic Stability of the Flexible Connecting Rod of a Slider Crank Mechanism , 1986 .

[63]  Peter Eberhard,et al.  DYNAMIC ANALYSIS OF FLEXIBLE MANIPULATORS, A LITERATURE REVIEW , 2006 .

[64]  G. N. Sandor,et al.  A General Method for Kineto-Elastodynamic Analysis and Synthesis of Mechanisms , 1972 .

[65]  B. V. Viscomi,et al.  Nonlinear Dynamic Response of Elastic Slider-Crank Mechanism , 1971 .

[66]  Brian S. Thompson,et al.  A survey of finite element techniques for mechanism design , 1986 .

[67]  Shorya Awtar,et al.  Extensible-Link Kinematic Model for Characterizing and Optimizing Compliant Mechanism Motion , 2014 .

[68]  S. Rahmanian,et al.  Bifurcation in planar slider–crank mechanism with revolute clearance joint , 2015 .

[69]  M. S. Evans,et al.  Dynamic modeling of compliant constant-force compression mechanisms , 2003 .

[70]  A. S. Hall,et al.  An Analytical Study of the Dynamics of an Elastic Linkage , 1966 .

[71]  Wanda Szemplińska-Stupnicka,et al.  Local methods in predicting occurrence of chaos in two-well potential systems: Superharmonic frequency region , 1992 .