Output feedback control of nonlinear quadratic systems

This paper provides some sufficient conditions for the stabilization of nonlinear quadratic systems via output feedback. The main contribution consists of a design procedure which enables to find a dynamic output feedback controller guaranteeing for the closed-loop system: i) the local asymptotic stability of the zero equilibrium point; ii) the inclusion of a given polytopic region into the domain of attraction of the zero equilibrium point. This design procedure is formulated in terms of a Linear Matrix Inequalities (LMIs) feasibility problem, which can be efficiently solved via available optimization algorithms. The effectiveness of the proposed methodology is shown through a numerical example.

[1]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[2]  F. Garofalo,et al.  Stability robustness of interval matrices via Lyapunov quadratic forms , 1993, IEEE Trans. Autom. Control..

[3]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[4]  Ryan Feeley,et al.  Some controls applications of sum of squares programming , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[5]  R. Marino,et al.  Global adaptive output-feedback control of nonlinear systems. I. Linear parameterization , 1993, IEEE Trans. Autom. Control..

[6]  Alberto Isidori,et al.  A note on the problem of semiglobal practical stabilization of uncertain nonlinear systems via dynamic output feedback , 2000 .

[7]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[8]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[9]  Francesco Amato,et al.  An insight into tumor dormancy equilibrium via the analysis of its domain of attraction , 2008, Biomed. Signal Process. Control..

[10]  Bruno Siciliano,et al.  Modelling and Control of Robot Manipulators , 1997, Advanced Textbooks in Control and Signal Processing.

[11]  Francesco Amato,et al.  Robust Control of Linear Systems Subject to Uncertain Time-Varying Parameters , 2006 .

[12]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[13]  C. Byrnes Output Regulation of Uncertain Nonlinear Systems , 1997 .

[14]  Zhong-Ping Jiang,et al.  Further results on robust semiglobal stabilization with dynamic input uncertainties , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[15]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[16]  H. Khalil,et al.  A separation principle for the stabilization of a class of nonlinear systems , 1997 .

[17]  Vijay Vittal,et al.  Application of the normal form of vector fields to predict interarea separation in power systems , 1997 .

[18]  Jie Huang,et al.  Global robust output regulation of output feedback systems with unknown high-frequency gain sign , 2006, IEEE Transactions on Automatic Control.

[19]  Carlo Cosentino,et al.  On the region of attraction of nonlinear quadratic systems , 2007, Autom..

[20]  Francesco Amato,et al.  State feedback control of nonlinear quadratic systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[21]  A. Papachristodoulou,et al.  Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[22]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[23]  A. Vardulakis Internal stabilization and decoupling in linear multivariable systems by unity output feedback compensation , 1987 .

[24]  Peter J Seiler Stability region estimates for SDRE controlled systems using sum of squares optimization , 2003, Proceedings of the 2003 American Control Conference, 2003..

[25]  Christopher I. Byrnes,et al.  Output regulation for nonlinear systems: an overview , 2000 .

[26]  Gildas Besançon,et al.  On output transformations for state linearization up to output injection , 1999, IEEE Trans. Autom. Control..

[27]  R. Marino,et al.  Global adaptive output-feedback control of nonlinear systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[28]  L. Praly,et al.  Stabilization by output feedback for systems with ISS inverse dynamics , 1993 .

[29]  A. Teel,et al.  Tools for Semiglobal Stabilization by Partial State and Output Feedback , 1995 .

[30]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[31]  Zhengtao Ding,et al.  Global Output Feedback Stabilization of Nonlinear Systems With Nonlinearity of Unmeasured States , 2009, IEEE Transactions on Automatic Control.

[32]  O. Rössler Chaotic Behavior in Simple Reaction Systems , 1976 .

[33]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[34]  H. Khalil,et al.  Adaptive output feedback control of nonlinear systems represented by input-output models , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.