Relaxor ferroelectric-like behavior in 10PbTiO3–10Fe2O3–30V2O5–50B2O3 glass for energy storage applications

[1]  A. Tataroğlu,et al.  Complex dielectric permittivity, electric modulus and electrical conductivity analysis of Au/Si3N4/p-GaAs (MOS) capacitor , 2021, Journal of Materials Science: Materials in Electronics.

[2]  M. El-Desoky,et al.  Annealing effects on the structural, thermal, and electrical properties of 10PbTiO3–10Fe2O3–30V2O5–50B2O3 glass , 2021, Journal of Materials Science: Materials in Electronics.

[3]  Xihong Hao,et al.  High energy-storage density under low electric field in lead-free relaxor ferroelectric film based on synergistic effect of multiple polar structures , 2020 .

[4]  M. El-Desoky,et al.  Effects of heat treatment on the structural and electrical conductivity of Fe2O3–P2O5–PbO glasses , 2019, Journal of Materials Science: Materials in Electronics.

[5]  T. Pietrzak Multi-device software for impedance spectroscopy measurements with stabilization in low and high temperature ranges working under Linux environment , 2019, Ionics.

[6]  M. El-Desoky,et al.  Observation of relaxor-like behavior in BT and PT doped glasses for energy storage applications , 2019, Journal of Alloys and Compounds.

[7]  S. Rahman,et al.  AC conductivity and dielectric properties of B2O3-WO3-TeO2- Li2O glasses , 2018 .

[8]  Relaxor Ferroelectrics,et al.  Relaxor Ferroelectrics , 2018 .

[9]  M. Al‐Assiri,et al.  Relaxor Ferroelectric-Like Behavior in Barium Titanate-Doped Glass via Formation of Polar Clusters , 2017, Journal of Cluster Science.

[10]  M. Wasiucionek,et al.  Nanocrystallisation in vanadate phosphate and lithium iron vanadate phosphate glasses , 2016 .

[11]  Xiu-yu Li,et al.  A new ternary ferroelectric crystal of Pb(Y1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 , 2014 .

[12]  Z. Jagličić,et al.  Synthesis and magnetic properties of hematite particles in a nanomedusa morphology , 2014 .

[13]  J. Hassan,et al.  Dielectric properties, impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction , 2013 .

[14]  S. Miga,et al.  Crossover from ferroelectric to relaxor and cluster glass in BaTi1−xZrxO3 (x = 0.25–0.35) studied by non-linear permittivity , 2013 .

[15]  A. Behera,et al.  Impedance Properties Of 0.7(BiFeO3)-0.3 (PbTiO3) Composite , 2013 .

[16]  P. Mustarelli,et al.  Electrical properties of V2O5 nanomaterials prepared by twin rollers technique , 2012 .

[17]  Z. Ye,et al.  DIELECTRIC RELAXATION IN RELAXOR FERROELECTRICS , 2012 .

[18]  A. Tataroğlu,et al.  On the temperature dependent dielectric properties, conductivity and resistivity of MIS structures at 1MHz , 2012 .

[19]  G.-M. Rotaru,et al.  Relaxing with relaxors: a review of relaxor ferroelectrics , 2011 .

[20]  M. El-Desoky,et al.  Ferroelectricity in the glassy material of the composition Bi2O3–Pb3O4–CuO–K2O , 2010 .

[21]  S. Turrell,et al.  Raman scattering boson peak and differential scanning calorimetry studies of the glass transition in tellurium–zinc oxide glasses , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  C. T. Moynihan,et al.  Raman scattering and Boson peaks in glasses: temperature and pressure effects , 2004 .

[23]  W. Mönch Temperature and Pressure Effects , 2004 .

[24]  C. Koch,et al.  Magnetic properties of hematite nanoparticles , 2000 .

[25]  N. Setter,et al.  Spontaneous (zero‐field) relaxor–to–ferroelectric‐phase transition in disordered Pb(Sc1/2Nb1/2)O3 , 1995 .

[26]  A. P. Sokolov,et al.  The nature of boson peak in Raman scattering in glasses , 1986 .

[27]  Terutaro Nakamura,et al.  The Structural, Dielectric, Raman-Spectral and Low-Temperature Properties of Amorphous PbTiO3 , 1984 .

[28]  A. R. Long Frequency-dependent loss in amorphous semiconductors , 1982 .

[29]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.