Flammability Studies of a Novel Class of Thermoplastic Elastomer Nanocomposites

The thermal insulation properties of thermoplastic polyurethane elastomer nanocomposites were characterized at different heat fluxes. Thermoplastic polyurethane elastomer was modified with different loadings of montmorillonite nanoclays and carbon nanofibers (CNFs) via twin screw extrusion processing. The addition of nanoparticle into thermoplastic polyurethane elastomer resulted in the formation of a char layer and modified the thermal insulative properties of the material. It was found that thermoplastic polyurethane elastomer with 10 wt% CNFs and with 5 wt% nanoclays gave the best thermal performance with respect to protecting a substrate. The surface temperature of the thermoplastic polyurethane elastomer-clay nanocomposites did not vary much with addition of clay particles while the surface temperature of the thermoplastic polyurethane elastomer-CNF nanocomposites varied more substantially. Some of the trends in surface and substrate temperature measurements with nanomodification can be described using a simple energy balance model that takes into account the basic heat transfer mechanisms.

[1]  K. Sattler,et al.  Strain-Induced Disorder in Ferroic Nanocomposites , 2010 .

[2]  O. Ezekoye,et al.  Population-based models of thermoplastic degradation: Using optimization to determine model parameters , 2009 .

[3]  O. Ezekoye,et al.  Kinetics and Thermophysical Properties of Polymer Nanocomposites for Solid Rocket Motor Insulation , 2009 .

[4]  Zhiping Luo,et al.  Quantitative study of the dispersion degree in carbon nanofiber/polymer and carbon nanotube/polymer nanocomposites , 2008 .

[5]  L. Pilato,et al.  Material Characterization of Intumescent Flame Retardant Polyamide 11 Nanocomposites , 2008 .

[6]  Zhiping Luo,et al.  Quantification of the layer dispersion degree in polymer layered silicate nanocomposites by transmission electron microscopy , 2008 .

[7]  Zhiping Luo,et al.  Quantitative Electron Microscopy of Nanocomposites , 2007, Microscopy and Microanalysis.

[8]  O. Ezekoye,et al.  Experimental characterization of thermoplastic polyurethane nanocomposite under extreme conditions , 2007 .

[9]  Gary G. Tibbetts,et al.  A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites , 2007 .

[10]  J. Koo,et al.  Quantifying the dispersion of mixture microstructures , 2007, Journal of microscopy.

[11]  J. Gilman Flame Retardant Mechanism of Polymer–Clay Nanocomposites , 2006 .

[12]  T. Kashiwagi Progress in Flammability Studies of Nanocomposites with New Types of Nanoparticles , 2006 .

[13]  G. Camino,et al.  Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites , 2006 .

[14]  A. Morgan Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems† , 2006 .

[15]  L. Pilato,et al.  Polymer Nanostructured Materials for Propulsion Systems , 2005 .

[16]  Joseph H. Koo,et al.  Flammability and thermophysical characterization of thermoplastic elastomer nanocomposites , 2004 .

[17]  Zhiping Luo,et al.  Nanocomposite rocket ablative materials: Processing, characterization, and performance , 2003 .

[18]  Jeffrey W. Gilman,et al.  Characterization of Polymer-Layered Silicate (Clay) Nanocomposites by Transmission Electron Microscopy and X-Ray Diffraction: A Comparative Study , 2003 .

[19]  K. Wei,et al.  The effect of nano-sized silicate layers from montmorillonite on glass transition, dynamic mechanical, and thermal degradation properties of segmented polyurethane , 2002 .

[20]  R. Vaia,et al.  X‐ray powder diffraction of polymer/layered silicate nanocomposites: Model and practice , 2002 .

[21]  D. Webster Advances in Urethane Science and Technology , 2002 .

[22]  Charles U. Pittman,et al.  Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites , 2002 .

[23]  K. Wei,et al.  High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders , 2001 .

[24]  Richard H. Harris,et al.  Flammability Properties of Polymer - Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites , 2000 .

[25]  Emmanuel P. Giannelis,et al.  Polymer-layered silicate nanocomposites: Synthesis, properties and applications , 1998 .

[26]  Michel Le Bras,et al.  Press Release: Fire Retardancy of Polymers: The use of Intumescence , 1998, Engineering Plastics.

[27]  Takashi Kashiwagi,et al.  NANOCOMPOSITES : A REVOLUTIONARY NEW FLAME RETARDANT APPROACH , 1997 .

[28]  George Woods,et al.  The ICI Polyurethanes Book , 1987 .

[29]  T. Kashiwagi Flammability of Nanocomposites-Effects of the Shape of Nanoparticles | NIST , 2005 .

[30]  E. Chiellini,et al.  Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites , 2002 .

[31]  B. Maruyama,et al.  Carbon nanotubes and nanofibers in composite materials , 2002 .

[32]  Emmanuel P. Giannelis,et al.  Polymer Layered Silicate Nanocomposites , 1996 .