Safe Reduction Rules for Weighted Treewidth

AbstractSeveral sets of reductions rules are known for preprocessing a graph when computing its treewidth. In this paper we give reduction rules for a weighted variant of treewidth, motivated by the analysis of algorithms for probabilistic networks. We present two general reduction rules that are safe for weighted treewidth. They generalise many of the existing reduction rules for treewidth. Experimental results show that these reduction rules can significantly reduce the problem size for several instances of real-life probabilistic networks.

[1]  S. Arnborg,et al.  Characterization and recognition of partial 3-trees , 1986 .

[2]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[3]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[4]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[5]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[6]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1990, SIAM J. Discret. Math..

[7]  Robin Thomas,et al.  Algorithms Finding Tree-Decompositions of Graphs , 1991, J. Algorithms.

[8]  Bruno Courcelle,et al.  An algebraic theory of graph reduction , 1993, JACM.

[9]  Jens Lagergren,et al.  The Nonexistence of Reduction Rules Giving an Embedding into a K-tree , 1994, Discret. Appl. Math..

[10]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[11]  Daniel P. Sanders On Linear Recognition of Tree-Width at Most Four , 1996, SIAM J. Discret. Math..

[12]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[13]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[14]  Linda C. van der Gaag,et al.  Pre-processing for Triangulation of Probabilistic Networks , 2001, UAI.

[15]  H. Bodlaender,et al.  Reduction Algorithms for Graphs of Small Treewidth , 1993, Inf. Comput..

[16]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..

[17]  Arie M. C. A. Koster,et al.  Solving partial constraint satisfaction problems with tree decomposition , 2002, Networks.

[18]  Arie M. C. A. Koster,et al.  Safe Seperators for Treewidth , 2004, ALENEX/ANALC.

[19]  Arie M. C. A. Koster,et al.  Contraction and Treewidth Lower Bounds , 2004, J. Graph Algorithms Appl..

[20]  Fedor V. Fomin,et al.  Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In , 2004, ICALP.

[21]  Vibhav Gogate,et al.  A Complete Anytime Algorithm for Treewidth , 2004, UAI.

[22]  Arie M. C. A. Koster,et al.  Degree-Based Treewidth Lower Bounds , 2005, WEA.

[23]  Arie M. C. A. Koster,et al.  PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..

[24]  Hans L. Bodlaender,et al.  New Upper Bound Heuristics for Treewidth , 2005, WEA.

[25]  Arie M. C. A. Koster,et al.  Safe separators for treewidth , 2006, Discret. Math..

[26]  Alexander Grigoriev,et al.  Treewidth Lower Bounds with Brambles , 2005, Algorithmica.