Hierarchical Losses and New Resources for Fine-grained Entity Typing and Linking

Extraction from raw text to a knowledge base of entities and fine-grained types is often cast as prediction into a flat set of entity and type labels, neglecting the rich hierarchies over types and entities contained in curated ontologies. Previous attempts to incorporate hierarchical structure have yielded little benefit and are restricted to shallow ontologies. This paper presents new methods using real and complex bilinear mappings for integrating hierarchical information, yielding substantial improvement over flat predictions in entity linking and fine-grained entity typing, and achieving new state-of-the-art results for end-to-end models on the benchmark FIGER dataset. We also present two new human-annotated datasets containing wide and deep hierarchies which we will release to the community to encourage further research in this direction: MedMentions, a collection of PubMed abstracts in which 246k mentions have been mapped to the massive UMLS ontology; and TypeNet, which aligns Freebase types with the WordNet hierarchy to obtain nearly 2k entity types. In experiments on all three datasets we show substantial gains from hierarchy-aware training.

[1]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[2]  Sebastian Riedel,et al.  Constructing Datasets for Multi-hop Reading Comprehension Across Documents , 2017, TACL.

[3]  Mausam,et al.  Mitigating the Effect of Out-of-Vocabulary Entity Pairs in Matrix Factorization for KB Inference , 2018, IJCAI.

[4]  Hans-Peter Kriegel,et al.  A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.

[5]  Zhiyuan Liu,et al.  Neural Relation Extraction with Selective Attention over Instances , 2016, ACL.

[6]  Ming-Wei Chang,et al.  Inferring Missing Entity Type Instances for Knowledge Base Completion: New Dataset and Methods , 2015, NAACL.

[7]  Zhiyong Lu,et al.  NCBI disease corpus: A resource for disease name recognition and concept normalization , 2014, J. Biomed. Informatics.

[8]  Heng Ji,et al.  Label Noise Reduction in Entity Typing by Heterogeneous Partial-Label Embedding , 2016, KDD.

[9]  Sanja Fidler,et al.  Order-Embeddings of Images and Language , 2015, ICLR.

[10]  Gerhard Weikum,et al.  HYENA: Hierarchical Type Classification for Entity Names , 2012, COLING.

[11]  Núria Queralt-Rosinach,et al.  DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants , 2016, Nucleic Acids Res..

[12]  Zhiyong Lu,et al.  GNormPlus: An Integrative Approach for Tagging Genes, Gene Families, and Protein Domains , 2015, BioMed research international.

[13]  Razvan C. Bunescu,et al.  Using Encyclopedic Knowledge for Named entity Disambiguation , 2006, EACL.

[14]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[15]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[16]  Silviu Cucerzan,et al.  Large-Scale Named Entity Disambiguation Based on Wikipedia Data , 2007, EMNLP.

[17]  Zhiyuan Liu,et al.  Representation Learning of Knowledge Graphs with Hierarchical Types , 2016, IJCAI.

[18]  Erik F. Tjong Kim Sang,et al.  Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition , 2003, CoNLL.

[19]  Andrew McCallum,et al.  Building Knowledge Bases with Universal Schema: Cold Start and Slot-Filling Approaches , 2015, TAC.

[20]  Zhiyong Lu,et al.  TaggerOne: joint named entity recognition and normalization with semi-Markov Models , 2016, Bioinform..

[21]  Zhiyong Lu,et al.  DNorm: disease name normalization with pairwise learning to rank , 2013, Bioinform..

[22]  Zhiyong Lu,et al.  BioCreative V CDR task corpus: a resource for chemical disease relation extraction , 2016, Database J. Biol. Databases Curation.

[23]  Jennifer M. Rust,et al.  The BioGRID Interaction Database , 2011 .

[24]  Kentaro Inui,et al.  Neural Architectures for Fine-grained Entity Type Classification , 2016, EACL.

[25]  Valentin I. Spitkovsky,et al.  A Cross-Lingual Dictionary for English Wikipedia Concepts , 2012, LREC.

[26]  Andrew McCallum,et al.  Generalizing to Unseen Entities and Entity Pairs with Row-less Universal Schema , 2016, EACL.

[27]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[28]  Daniel Jurafsky,et al.  Distant supervision for relation extraction without labeled data , 2009, ACL.

[29]  Dan Klein,et al.  Capturing Semantic Similarity for Entity Linking with Convolutional Neural Networks , 2016, NAACL.

[30]  Guillaume Bouchard,et al.  Complex Embeddings for Simple Link Prediction , 2016, ICML.

[31]  Douwe Kiela,et al.  Poincaré Embeddings for Learning Hierarchical Representations , 2017, NIPS.

[32]  Gerhard Weikum,et al.  FINET: Context-Aware Fine-Grained Named Entity Typing , 2015, EMNLP.

[33]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[34]  James Allan,et al.  Entity query feature expansion using knowledge base links , 2014, SIGIR.

[35]  Thomas C. Wiegers,et al.  Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical–gene–disease networks , 2008, Nucleic Acids Res..

[36]  Ramesh Nallapati,et al.  Multi-instance Multi-label Learning for Relation Extraction , 2012, EMNLP.

[37]  Andrew McCallum,et al.  Universal schema for entity type prediction , 2013, AKBC '13.

[38]  Steven Bird,et al.  NLTK: The Natural Language Toolkit , 2002, ACL.

[39]  Mark Tygert,et al.  Hierarchical loss for classification , 2017, ArXiv.

[40]  Xiang Li,et al.  Probabilistic Embedding of Knowledge Graphs with Box Lattice Measures , 2018, ACL.

[41]  Olivier Bodenreider,et al.  The Unified Medical Language System (UMLS): integrating biomedical terminology , 2004, Nucleic Acids Res..

[42]  Kara Dolinski,et al.  The BioGRID interaction database: 2017 update , 2016, Nucleic Acids Res..

[43]  Bowen Zhou,et al.  Classifying Relations by Ranking with Convolutional Neural Networks , 2015, ACL.

[44]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[45]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[46]  Daniel S. Weld,et al.  Fine-Grained Entity Recognition , 2012, AAAI.

[47]  Heike Adel,et al.  Noise Mitigation for Neural Entity Typing and Relation Extraction , 2016, EACL.

[48]  Steven Bird,et al.  NLTK: The Natural Language Toolkit , 2002, ACL 2006.

[49]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[50]  Partha Pratim Talukdar,et al.  Automatic Gloss Finding for a Knowledge Base using Ontological Constraints , 2015, WSDM.

[51]  Andrew McCallum,et al.  Word Representations via Gaussian Embedding , 2014, ICLR.

[52]  Rajarshi Das,et al.  Question Answering on Knowledge Bases and Text using Universal Schema and Memory Networks , 2017, ACL.

[53]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[54]  Nevena Lazic,et al.  Context-Dependent Fine-Grained Entity Type Tagging , 2014, ArXiv.

[55]  Dan Roth,et al.  Entity Linking via Joint Encoding of Types, Descriptions, and Context , 2017, EMNLP.

[56]  Heike Adel,et al.  Corpus-level Fine-grained Entity Typing , 2017, J. Artif. Intell. Res..

[57]  Dan Klein,et al.  A Joint Model for Entity Analysis: Coreference, Typing, and Linking , 2014, TACL.