A-posteriori modeling error estimation for hierarchic plate models

Summary.Hierarchic plate models are dimensional reductions obtained by semidiscretization of the three-dimensional plate problem in the transverse direction and energy projection. We derive computable a-posteriori estimators for the modeling error thus incurred under the assumption that the resulting two-dimensional plate models are solved exactly. The estimators are valid for homogeneous, monoclinic materials, for plates with unsmooth midsurfaces and for a wide class of variational edge conditions. Computable a-posteriori bounds on the effectivity indices are also derived and sufficient conditions for the asymptotic (i.e. as the plate thickness tends to zero) and the spectral (i.e. as the order of the plate model tends to infinity) exactness of the estimators are given. Numerical examples are presented.

[1]  Stuart S. Antman,et al.  Material constraints, lagrange multipliers, and compatibility. Applications to rod and shell theories , 1991 .

[2]  Christoph Schwab,et al.  On the posteriori estimation of the modeling error for the heat conduction in a plate and its use for adaptive hierarchical modeling , 1994 .

[3]  I. Babuska,et al.  Hierarchic models for laminated composites , 1992 .

[4]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[5]  Philippe G. Ciarlet,et al.  Plates And Junctions In Elastic Multi-Structures , 1990 .

[6]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[7]  Boundary layer resolution in hierarchical models of laminated composites , 1994 .

[8]  Barna A. Szabó,et al.  Hierarchic plate and shell models based on p-extension , 1988 .

[9]  Ivo Babuška,et al.  Hierarchic modeling of plates , 1991 .

[10]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[11]  E. Reissner,et al.  On bending of elastic plates , 1947 .

[12]  B. Miara Optimal spectral approximation in linearized plate theory , 1989 .

[13]  G. Kirchhoff,et al.  Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. , 1850 .

[14]  A. K. Norr,et al.  Adaptive, Multilevel, and Hierarchical Computational Strategies , 1992 .

[15]  Ph. Destuynder,et al.  Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité , 1981 .

[16]  C. Schwab,et al.  Boundary layers of hierarchical beam and plate models , 1995 .

[17]  I. Babuska,et al.  Locking effects in the finite element approximation of plate models , 1995 .

[18]  Christoph Schwab,et al.  The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..

[19]  Ivo Babuška,et al.  A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains , 1996 .