Comparative study of density functionals for the description of lithium‐graphite intercalation compounds

The lack of description of van der Waals interactions in layered materials such as graphite and binary graphite intercalation compounds remains a main drawback of conventional density functional theory. Two fundamentally different approaches to overcome this issue are the employment of semiempirical dispersion correction scheme such as Grimme dispersion correction or nonlocal density functionals. We carefully compare these two approaches for the description of the geometric structure and the thermodynamic stability of pure graphite and Li‐GICs at different lithium concentrations and stages. Based on the computed formation energies, we also evaluate the lithium‐graphite intercalation potential. We find that PBE‐D3(BJ) accurately reproduces the lattice parameters and the interlayer binding energy of graphite, although it underestimates the thermodynamic stability of stage‐II Li‐GICs mainly due to overbinding of carbon atoms in pure graphite. The nonlocal van der Waals functionals optB88‐vdW, optB86b‐vdW, and revPBE‐vdW show a good agreement with experiments concerning stability of Li‐GICs of different stages, although they overestimate the van der Waals interactions in graphite. The experimentally determined decreasing step‐function behavior of Li‐graphite intercalation potential can be qualitatively reproduced only by employing the revPBE van der Waals functional, whereas the other density functionals fail in the description. © 2019 Wiley Periodicals, Inc.

[1]  Syassen,et al.  Graphite under pressure: Equation of state and first-order Raman modes. , 1989, Physical review. B, Condensed matter.

[2]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[3]  H. Gualous,et al.  Model of Lithium Intercalation into Graphite by Potentiometric Analysis with Equilibrium and Entropy Change Curves of Graphite Electrode , 2018 .

[4]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[5]  Lu J. Sham,et al.  ONE-PARTICLE PROPERTIES OF AN INHOMOGENEOUS INTERACTING ELECTRON GAS. , 1966 .

[6]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[7]  Richard Dronskowski,et al.  Computational Chemistry of Solid State Materials , 2005 .

[8]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[9]  T. Grande,et al.  Van der Waals density functional study of the energetics of alkali metal intercalation in graphite , 2014 .

[10]  J. Janek,et al.  Volume Changes of Graphite Anodes Revisited: A Combined Operando X-ray Diffraction and In Situ Pressure Analysis Study , 2018 .

[11]  G. Galli,et al.  Nature and strength of interlayer binding in graphite. , 2009, Physical review letters.

[12]  Karim Zaghib,et al.  Negative electrodes for Li-ion batteries , 2002 .

[13]  Hideki Nakayama,et al.  First-principles study of alkali metal-graphite intercalation compounds , 2012 .

[14]  L. A. Monyakina,et al.  Intercalation reactions and carbide formation in graphite-lithium system , 1996 .

[15]  P. Heitjans,et al.  Theoretical Study of Li Migration in Lithium–Graphite Intercalation Compounds with Dispersion-Corrected DFT Methods , 2014 .

[16]  J. Fischer,et al.  Neutron scattering study of lithium-graphite intercalation compounds , 1980 .

[17]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[18]  P. Biensan,et al.  On the choice of graphite for lithium ion batteries , 1999 .

[19]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[20]  J. Reimers,et al.  Problems, successes and challenges for the application of dispersion-corrected density-functional theory combined with dispersion-based implicit solvent models to large-scale hydrophobic self-assembly and polymorphism , 2016 .

[21]  Stephen P. Kelty Computational Chemistry of Solid State Materials: A Guide for Materials Scientists, Chemists, Physicists and Others , 2006 .

[22]  Y. Nishi Lithium ion secondary batteries; past 10 years and the future , 2001 .

[23]  Ivano Tavernelli,et al.  Variational optimization of effective atom centered potentials for molecular properties. , 2005, The Journal of chemical physics.

[24]  Hendrik Ulbricht,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2004 .

[25]  O. A. V. Lilienfeld,et al.  Performance of optimized atom-centered potentials for weakly bonded systems using density functional theory , 2005 .

[26]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[28]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[29]  Masayuki Hasegawa,et al.  Semiempirical approach to the energetics of interlayer binding in graphite , 2004 .

[30]  J. Klimeš,et al.  Improved description of soft layered materials with van der Waals density functional theory , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  K. Nikolowski,et al.  Lithium Intercalation into Graphitic Carbons Revisited: Experimental Evidence for Twisted Bilayer Behavior , 2013 .

[32]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[33]  H. Pierson Handbook of carbon, graphite, diamond, and fullerenes , 1992 .

[34]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[35]  Helmut Ehrenberg,et al.  Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction , 2014 .

[36]  R. Huggins Advanced Batteries: Materials Science Aspects , 2008 .

[37]  J. Charlier,et al.  Graphite Interplanar Bonding: Electronic Delocalization and van der Waals Interaction , 1994 .

[38]  A. Tkatchenko,et al.  van der Waals dispersion interactions in molecular materials: beyond pairwise additivity , 2015, Chemical science.

[39]  R. Cohen,et al.  Structural diversity in lithium carbides , 2015, 1607.03170.

[40]  Donald G Truhlar,et al.  Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. , 2006, The journal of physical chemistry. A.

[41]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[42]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[43]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[44]  G. Brocks,et al.  Li intercalation in graphite: A van der waals density-functional study , 2014, 1410.5632.

[45]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[46]  A. Watanabe,et al.  Energetic evaluation of possible stacking structures of Li-intercalation in graphite using a first-principle pseudopotential calculation , 2007 .

[47]  Adrienn Ruzsinszky,et al.  Binding energy curves from nonempirical density functionals II. van der Waals bonds in rare-gas and alkaline-earth diatomics. , 2005, The journal of physical chemistry. A.

[48]  Luc Beaunier,et al.  Introduction to Materials , 2010 .

[49]  V. Viswanathan,et al.  Robust high-fidelity DFT study of the lithium-graphite phase diagram , 2016, Physical Review Materials.

[50]  Yasuharu Okamoto,et al.  Density Functional Theory Calculations of Alkali Metal (Li, Na, and K) Graphite Intercalation Compounds , 2014 .

[51]  F. Baino Introduction to materials science , 2013 .

[52]  Gerbrand Ceder,et al.  Application of first-principles calculations to the design of rechargeable Li-batteries , 1997 .

[53]  Xi Zhang,et al.  Comparison of Lithium-Ion Anode Materials Using an Experimentally Verified Physics-Based Electrochemical Model , 2017 .

[54]  J. Soler,et al.  Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. , 2008, Physical review letters.

[55]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[56]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[57]  R. Juza,et al.  Lithium-Graphit-Einlagerungsverbindungen , 2004, Naturwissenschaften.

[58]  Richard Dronskowski,et al.  Computational Chemistry of Solid State Materials: A Guide for Materials Scientists, Chemists, Physicists and others , 2006 .

[59]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[60]  Xin Zhao,et al.  Materials for rechargeable lithium-ion batteries. , 2012, Annual review of chemical and biomolecular engineering.

[61]  A. Tkatchenko,et al.  Dispersion Interactions with Density-Functional Theory: Benchmarking Semiempirical and Interatomic Pairwise Corrected Density Functionals. , 2011, Journal of chemical theory and computation.

[62]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[63]  B. Fultz,et al.  Thermodynamics of Lithium Intercalation into Graphites and Disordered Carbons , 2004 .

[64]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[65]  W. Goddard,et al.  Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals , 2016, Proceedings of the National Academy of Sciences.

[66]  D. Guérard,et al.  Intercalation of lithium into graphite and other carbons , 1975 .

[67]  K. Gadkaree,et al.  Thermodynamics of Lithium Intercalation in Randomly Oriented High Graphene Carbon , 2017 .

[68]  Steven G. Louie,et al.  MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITE , 1998 .

[69]  Yoyo Hinuma,et al.  Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations , 2010 .

[70]  Clas Persson,et al.  Interlayer interactions in graphites , 2013, Scientific Reports.

[71]  M. Yin,et al.  Structural theory of graphite and graphitic silicon , 1984 .

[72]  Jinwoo Park,et al.  Van der Waals density-functional theory study for bulk solids with BCC, FCC, and diamond structures , 2015, 1504.01219.

[73]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[74]  Structural and chemical embrittlement of grain boundaries by impurities: A general theory and first-principles calculations for copper , 2006, cond-mat/0608508.

[75]  Michikazu Hara,et al.  Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries , 1995 .

[76]  A. Kuwabara,et al.  Why is sodium-intercalated graphite unstable? , 2017 .