High-performance nanostructured thermoelectric materials

Thermoelectric effects enable direct conversion between thermal and electrical energy and provide an alternative route for power generation and refrigeration. Over the past ten years, the exploration of high-performance thermoelectric materials has attracted great attention from both an academic research perspective and with a view to industrial applications. This review summarizes the progress that has been made in recent years in developing thermoelectric materials with a high dimensionless figure of merits (ZT) and the related fabrication processes for producing nanostuctured materials. The challenge to develop thermoelectric materials with superior performance is to tailor the interconnected thermoelectric physical parameters — electrical conductivity, Seebeck coefficient and thermal conductivity — for a crystalline system. Nanostructures provide a chance to disconnect the linkage between thermal and electrical transport by introducing some new scattering mechanisms. Recent improvements in thermoelectric efficiency appear to be dominated by efforts to reduce the lattice thermal conductivity through nanostructural design. The materials focused in this review include Bi–Te alloys, skutterudite compounds, Ag–Pb–Sb–Te quaternary systems, half-Heusler compounds and some high-ZT oxides. Possible future strategies for developing thermoelectric materials are also discussed.

[1]  Jingfeng Li,et al.  Effect of nano‐SiC dispersion on thermoelectric properties of Bi2Te3 polycrystals , 2006 .

[2]  Tiejun Zhu,et al.  Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure , 2008 .

[3]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[4]  Jingfeng Li,et al.  Thermoelectric property of fine-grained CoSb3 skutterudite compound fabricated by mechanical alloying and spark plasma sintering , 2007 .

[5]  Gang Chen,et al.  Semiclassical model for thermoelectric transport in nanocomposites , 2010 .

[6]  Jingfeng Li,et al.  Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound , 2009 .

[7]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[8]  Min Zhou,et al.  High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering , 2006 .

[9]  M. Dresselhaus,et al.  Structure study of bulk nanograined thermoelectric bismuth antimony telluride. , 2009, Nano letters.

[10]  Weishu Liu,et al.  Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb , 2008 .

[11]  Tiejun Zhu,et al.  Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3 , 2007 .

[12]  Jihui Yang,et al.  Evaluation of Half‐Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties , 2008 .

[13]  H J Goldsmid,et al.  The use of semiconductors in thermoelectric refrigeration , 1954 .

[14]  Chude Feng,et al.  Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1−xTaxCoSb , 2007 .

[15]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[16]  G. J. Snyder,et al.  Traversing the Metal‐Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb14Mn1−xAlxSb11 , 2008 .

[17]  Jihui Yang,et al.  Filling fraction limit for intrinsic voids in crystals: doping in skutterudites. , 2005, Physical review letters.

[18]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[19]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[20]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[21]  Qingjie Zhang,et al.  High temperature thermoelectric transport properties of double-atom-filled clathrate compounds YbxBa8−xGa16Ge30 , 2008 .

[22]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[23]  Donald T. Morelli,et al.  Transport properties of pure and doped M NiSn ( M =Zr, Hf) , 1999 .

[24]  Yuanhua Lin,et al.  High‐Temperature Thermoelectric Properties in the La2−xRxCuO4 (R: Pr, Y, Nb) Ceramics , 2009 .

[25]  K. Koumoto,et al.  Complex Oxide Materials for Potential Thermoelectric Applications , 2006 .

[26]  Pierre F. P. Poudeu,et al.  High figure of merit in nanostructured n-type KPbmSbTe m+2 thermoelectric materials , 2010 .

[27]  Kuei-Fang Hsu,et al.  Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions. , 2005, Journal of the American Chemical Society.

[28]  Xinbing Zhao,et al.  High-performance half-Heusler thermoelectric materials Hf1−x ZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering , 2009 .

[29]  L. D. Chen,et al.  Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12 , 2006 .

[30]  Heng Wang,et al.  Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound , 2008 .

[31]  Jonathan D'Angelo,et al.  Nanostructuring and High Thermoelectric Efficiency in p‐Type Ag(Pb1 – ySny)mSbTe2 + m , 2006 .

[32]  G. J. Snyder,et al.  Zintl phases for thermoelectric devices. , 2007, Dalton transactions.

[33]  Xiangyang Huang,et al.  The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions , 2006 .

[34]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[35]  D. Bérardan,et al.  Improved thermoelectric properties in double-filled Cey∕2Yby∕2Fe4−x(Co∕Ni)xSb12 skutterudites , 2005 .

[36]  J. Tu,et al.  Improved thermoelectric figure of merit in n-type CoSb3 based nanocomposites , 2007 .

[37]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[38]  J. Bowers,et al.  Effect of nanoparticle scattering on thermoelectric power factor , 2009 .

[39]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[40]  Hohyun Lee,et al.  Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy , 2008 .

[41]  Y. Pei,et al.  Synthesis and thermoelectric properties of KyCo4Sb12 , 2006 .

[42]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[43]  M. Plissonnier,et al.  "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe. , 2009, Nano letters.

[44]  Eckhard Müller,et al.  Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x(PbTe)1−x , 2005 .

[45]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[46]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[47]  Qiang Shen,et al.  Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds , 2001 .

[48]  Dmitri O. Klenov,et al.  Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. , 2006, Physical review letters.

[49]  C. Uher,et al.  Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12 , 2001 .

[50]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[51]  Jingfeng Li,et al.  Fabrication and thermoelectric properties of fine-grained TiNiSn compounds , 2009 .

[52]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[53]  Min Zhou,et al.  Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering , 2008 .

[54]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[55]  Jingfeng Li,et al.  Enhanced thermoelectric property originating from additional carrier pocket in skutterudite compounds , 2008 .

[56]  Jonathan D'Angelo,et al.  High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. , 2006, Angewandte Chemie.

[57]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[58]  G. J. Snyder,et al.  Interfaces in bulk thermoelectric materials: A review for Current Opinion in Colloid and Interface Science , 2009 .

[59]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[60]  Brian C. Sales,et al.  Pulsed laser deposition of Bi2Te3-based thermoelectric thin films , 2003 .

[61]  Eric S. Toberer,et al.  Zintl Chemistry for Designing High Efficiency Thermoelectric Materials , 2010 .

[62]  Xiangyang Huang,et al.  High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy , 2010 .

[63]  Matthew J. Kramer,et al.  Analysis of Nanostructuring in High Figure‐of‐Merit Ag1–xPbmSbTe2+m Thermoelectric Materials , 2009 .

[64]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[65]  Qingjie Zhang,et al.  Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure , 2008 .

[66]  Han Li,et al.  High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase , 2009 .

[67]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[68]  K. Yubuta,et al.  Crystal Structure of Thermoelectric Compound [Bi1.79Sr1.98Oy]0.63[RhO2] , 2005 .

[69]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[70]  H. Ohta,et al.  Ruddlesden-Popper phases as thermoelectric oxides: Nb-doped SrO(SrTiO3)n (n=1,2) , 2006 .

[71]  J. Androulakis,et al.  La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide , 2004 .

[72]  Takashi Goto,et al.  Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12(R:Ce,Ba,Y;M:Fe,Ni) , 2005 .

[73]  Terry M. Tritt,et al.  Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C , 2006 .

[74]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[75]  Ctirad Uher,et al.  Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. , 2008, Angewandte Chemie.

[76]  Eckhard Müller,et al.  Preparation and thermoelectric properties of AgPbmSbTe2+m alloys , 2009 .

[77]  Koichi Eguchi,et al.  High‐temperature thermoelectric properties of (Zn1−xAlx)O , 1996 .