Molecular Pathology of Cutaneous Melanoma and Nonmelanoma Skin Cancer

[1]  K. Delman,et al.  Pediatric melanomas and the atypical spitzoid melanocytic neoplasms. , 2012, American journal of surgery.

[2]  I. Neuhaus,et al.  Dermatofibrosarcoma Protuberans: A Review of the Literature , 2012, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[3]  J. Harbour The genetics of uveal melanoma: an emerging framework for targeted therapy , 2012, Pigment cell & melanoma research.

[4]  Ken Dutton-Regester,et al.  Reviewing the somatic genetics of melanoma: from current to future analytical approaches , 2012, Pigment cell & melanoma research.

[5]  J. Becker,et al.  Merkel cell carcinoma: recent insights and new treatment options , 2012, Current opinion in oncology.

[6]  Jimmy Lin,et al.  Delving into somatic variation in sporadic melanoma , 2012, Pigment cell & melanoma research.

[7]  Johannes P. W. Grimm,et al.  An intact retinoblastoma protein‐binding site in Merkel cell polyomavirus large T antigen is required for promoting growth of Merkel cell carcinoma cells , 2012, International journal of cancer.

[8]  A. Rademaker,et al.  Distinctive Clinical and Histologic Features in Cutaneous Melanoma With Copy Number Gains in 8q24 , 2012, The American journal of surgical pathology.

[9]  M. Kasper,et al.  Basal cell carcinoma - molecular biology and potential new therapies. , 2012, The Journal of clinical investigation.

[10]  Ryan W. Hick,et al.  From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. , 2012, The Journal of clinical investigation.

[11]  J. Guitart,et al.  Enhanced Detection of Spitzoid Melanomas Using Fluorescence In Situ Hybridization With 9p21 as an Adjunctive Probe , 2012, The American journal of surgical pathology.

[12]  R. Gibbs,et al.  Frequent somatic MAP3K5 and MAP3K9 mutations in metastatic melanoma identified by exome sequencing , 2011, Nature Genetics.

[13]  Johannes P. W. Grimm,et al.  Merkel cell carcinoma and Merkel cell polyomavirus: evidence for hit-and-run oncogenesis. , 2012, The Journal of investigative dermatology.

[14]  A. Eggermont,et al.  Skin Tumors Induced by Sorafenib; Paradoxic RAS–RAF Pathway Activation and Oncogenic Mutations of HRAS, TP53, and TGFBR1 , 2011, Clinical Cancer Research.

[15]  K. Brown,et al.  A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma , 2011, Nature.

[16]  G. Bellus,et al.  Immunosuppression and sebaceous tumors: a confirmed diagnosis of Muir-Torre syndrome unmasked by immunosuppressive therapy. , 2011, Journal of the American Academy of Dermatology.

[17]  S. Puig,et al.  A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma , 2011, Nature.

[18]  David Haussler,et al.  Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma , 2011, Proceedings of the National Academy of Sciences.

[19]  Jeffrey E. Lee,et al.  Genome-wide association study identifies three new melanoma susceptibility loci , 2011, Nature Genetics.

[20]  Jeffrey E. Lee,et al.  Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3 , 2011, Nature Genetics.

[21]  K. Whitehead,et al.  The significance of DNA mismatch repair genes in the diagnosis and management of periocular sebaceous cell carcinoma and Muir–Torre syndrome , 2011, British Journal of Ophthalmology.

[22]  P. A. Futreal,et al.  Novel Chromosomal Rearrangements and Break Points at the t(6;9) in Salivary Adenoid Cystic Carcinoma: Association with MYB–NFIB Chimeric Fusion, MYB Expression, and Clinical Outcome , 2011, Clinical Cancer Research.

[23]  David C Whiteman,et al.  The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin , 2011, Pigment cell & melanoma research.

[24]  D. Schrama,et al.  Merkel cell carcinoma – pathogenesis, clinical aspects and treatment , 2011, Journal of the European Academy of Dermatology and Venereology : JEADV.

[25]  N. Hayward,et al.  Melanocortin 1 receptor and risk of cutaneous melanoma: A meta‐analysis and estimates of population burden , 2011, International journal of cancer.

[26]  Jeffrey E. Lee,et al.  Genome-wide association study identifies novel alleles associated with risk of cutaneous basal cell carcinoma and squamous cell carcinoma , 2022 .

[27]  Antonio Marchetti,et al.  Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  A. Llombart‐Bosch,et al.  Dermatofibrosarcoma protuberans: a clinicopathological, immunohistochemical, genetic (COL1A1-PDGFB), and therapeutic study of low-grade versus high-grade (fibrosarcomatous) tumors. , 2011, Journal of the American Academy of Dermatology.

[29]  J. Becker,et al.  Germline mutations in BAP1 predispose to melanocytic tumors , 2011, Nature Genetics.

[30]  G. Pesole,et al.  Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas , 2011, Proceedings of the National Academy of Sciences.

[31]  B. Bastian,et al.  Assessment of Copy Number Status of Chromosomes 6 and 11 by FISH Provides Independent Prognostic Information in Primary Melanoma , 2011, The American journal of surgical pathology.

[32]  S. Haferkamp,et al.  Merkel cell polyomavirus status is not associated with clinical course of Merkel cell carcinoma. , 2011, The Journal of investigative dermatology.

[33]  P. Gerami,et al.  Update on fluorescence in situ hybridization in melanoma: state of the art. , 2011, Archives of pathology & laboratory medicine.

[34]  F. Solé,et al.  Molecular diagnosis of dermatofibrosarcoma protuberans: A comparison between reverse transcriptase‐polymerase chain reaction and fluorescence in situ hybridization methodologies , 2011, Genes, chromosomes & cancer.

[35]  T. Löning,et al.  The MYB–NFIB gene fusion—a novel genetic link between adenoid cystic carcinoma and dermal cylindroma , 2011, The Journal of pathology.

[36]  Jian Li,et al.  Temporal dissection of tumorigenesis in primary cancers. , 2011, Cancer discovery.

[37]  C. Antonescu,et al.  KIT as a therapeutic target in metastatic melanoma. , 2011, JAMA.

[38]  K. Kotkow,et al.  Targeting Superficial or Nodular Basal Cell Carcinoma with Topically Formulated Small Molecule Inhibitor of Smoothened , 2011, Clinical Cancer Research.

[39]  E. Epstein Mommy - where do tumors come from? , 2011, The Journal of clinical investigation.

[40]  A. Rütten,et al.  Multiple (Familial) Trichoepitheliomas: A Clinicopathological and Molecular Biological Study, Including CYLD and PTCH Gene Analysis, of a Series of 16 Patients , 2011, The American Journal of dermatopathology.

[41]  R. Scolyer,et al.  Clinical and pathological features of metastases of primary cutaneous desmoplastic melanoma , 2011, Histopathology.

[42]  A. Rademaker,et al.  Copy number gains in 11q13 and 8q24 [corrected] are highly linked to prognosis in cutaneous malignant melanoma. , 2011, The Journal of molecular diagnostics : JMD.

[43]  S. Davis,et al.  Exome sequencing identifies GRIN2A as frequently mutated in melanoma , 2011, Nature Genetics.

[44]  R. Scolyer,et al.  BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site , 2011, Pigment cell & melanoma research.

[45]  K. Sellheyer Basal cell carcinoma: cell of origin, cancer stem cell hypothesis and stem cell markers , 2011, The British journal of dermatology.

[46]  R. Scolyer,et al.  Evolving concepts in melanoma classification and their relevance to multidisciplinary melanoma patient care , 2011, Molecular oncology.

[47]  S. Arron,et al.  Transcriptome Sequencing Demonstrates that Human Papillomavirus is not Active in Cutaneous Squamous Cell Carcinoma , 2011, The Journal of investigative dermatology.

[48]  Philippe Autier,et al.  Epidemiological evidence that UVA radiation is involved in the genesis of cutaneous melanoma , 2011, Current opinion in oncology.

[49]  D. Hunter,et al.  A germline variant in the interferon regulatory factor 4 gene as a novel skin cancer risk locus. , 2011, Cancer research.

[50]  J. Taube,et al.  Merkel cell carcinoma: update and review. , 2011, Seminars in cutaneous medicine and surgery.

[51]  F. Solé,et al.  Identification of t(17;22)(q22;q13) (COL1A1/PDGFB) in dermatofibrosarcoma protuberans by fluorescence in situ hybridization in paraffin-embedded tissue microarrays. , 2011, Human pathology.

[52]  T. M. Rünger Is UV‐induced mutation formation in melanocytes different from other skin cells? , 2011, Pigment cell & melanoma research.

[53]  E. Epstein,et al.  Basal cell carcinomas arise from hair follicle stem cells in Ptch1(+/-) mice. , 2011, Cancer cell.

[54]  Bigang Liu,et al.  Role of IKKα in skin squamous cell carcinomas. , 2011, Future oncology.

[55]  A. Bowcock,et al.  Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas , 2010, Science.

[56]  D. Schadendorf,et al.  Genetic and morphologic features for melanoma classification , 2010, Pigment cell & melanoma research.

[57]  J. O'Brien,et al.  Mutations in GNA11 in uveal melanoma. , 2010, The New England journal of medicine.

[58]  Jun Wang,et al.  Merkel cell carcinoma. , 2010, Archives of pathology & laboratory medicine.

[59]  D. Galloway,et al.  Antibodies to merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in merkel cell carcinoma patients. , 2010, Cancer research.

[60]  Jianxin Shi,et al.  Genome‐wide association studies of pigmentation and skin cancer: a review and meta‐analysis , 2010, Pigment cell & melanoma research.

[61]  Deevya L. Narayanan,et al.  Review: Ultraviolet radiation and skin cancer , 2010, International journal of dermatology.

[62]  J. Becker,et al.  New virus associated with merkel cell carcinoma development. , 2010, Journal of the National Comprehensive Cancer Network : JNCCN.

[63]  M. Scott,et al.  Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. , 2010, Trends in molecular medicine.

[64]  Nicole Soranzo,et al.  IRF4 variants have age-specific effects on nevus count and predispose to melanoma. , 2010, American journal of human genetics.

[65]  W. Weyers,et al.  Brooke-Spiegler Syndrome: Report of 10 Patients From 8 Families With Novel Germline Mutations: Evidence of Diverse Somatic Mutations in the Same Patient Regardless of Tumor Type , 2010, Diagnostic molecular pathology : the American journal of surgical pathology, part B.

[66]  N. Gruis,et al.  Melanoma susceptibility genes. , 2010, Melanoma research.

[67]  D. Krahl,et al.  Basal cell carcinoma and pilomatrixoma mirror human follicular embryogenesis as reflected by their differential expression patterns of SOX9 and β‐catenin , 2010, The British journal of dermatology.

[68]  G. Dotto,et al.  Opposing roles for calcineurin and ATF3 in squamous skin cancer , 2010, Nature.

[69]  Yuan Chang,et al.  Merkel Cell Polyomavirus-Infected Merkel Cell Carcinoma Cells Require Expression of Viral T Antigens , 2010, Journal of Virology.

[70]  C. Ko Muir-Torre syndrome: Facts and controversies. , 2010, Clinics in dermatology.

[71]  K. Flaherty,et al.  Mutation-driven drug development in melanoma , 2010, Current opinion in oncology.

[72]  V. Swope,et al.  Stepping up melanocytes to the challenge of UV exposure , 2010, Pigment cell & melanoma research.

[73]  D. Elder,et al.  Melanocytic Tumors of Uncertain Malignant Potential: Results of a Tutorial Held at the XXIX Symposium of the International Society of Dermatopathology in Graz, October 2008 , 2010, The American journal of surgical pathology.

[74]  Anna-Katharina von Thaler,et al.  The role of ultraviolet radiation in melanomagenesis , 2010, Experimental dermatology.

[75]  C. Bertolotto,et al.  Fifteen‐year quest for microphthalmia‐associated transcription factor target genes , 2010, Pigment cell & melanoma research.

[76]  A. Lazar,et al.  Sebaceous neoplasia and the Muir–Torre syndrome: important connections with clinical implications , 2010, Histopathology.

[77]  A. Costanzo,et al.  Treasure or Artifact: A Decade of p63 Research Speaks for Itself , 2009, Cell Death and Differentiation.

[78]  B. Bastian,et al.  KIT as a therapeutic target in melanoma. , 2010, The Journal of investigative dermatology.

[79]  M. Herlyn,et al.  The molecular pathology of cutaneous melanoma. , 2010, Cancer biomarkers : section A of Disease markers.

[80]  A. Ashworth,et al.  Tumor mapping in 2 large multigenerational families with CYLD mutations: implications for disease management and tumor induction. , 2009, Archives of dermatology.

[81]  Jimmy Lin,et al.  Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4 , 2009, Nature Genetics.

[82]  L. Morrison,et al.  Fluorescence In Situ Hybridization (FISH) as an Ancillary Diagnostic Tool in the Diagnosis of Melanoma , 2009, The American journal of surgical pathology.

[83]  W. Pavan,et al.  Frequent mutations in the MITF pathway in melanoma , 2009, Pigment cell & melanoma research.

[84]  A. Llombart‐Bosch,et al.  Dermatofibrosarcoma protuberans: clinical, pathological, and genetic (COL1A1‐PDGFB ) study with therapeutic implications , 2009, Histopathology.

[85]  A. Rütten,et al.  Morphologic Diversity of Malignant Neoplasms Arising in Preexisting Spiradenoma, Cylindroma, and Spiradenocylindroma Based on the Study of 24 Cases, Sporadic or Occurring in the Setting of Brooke-Spiegler Syndrome , 2009, The American journal of surgical pathology.

[86]  H. Kutzner,et al.  Mutations in Exon 3 of the CTNNB1 Gene (β-Catenin Gene) in Cutaneous Adnexal Tumors , 2009, The American Journal of dermatopathology.

[87]  J. Tardío CD34‐reactive tumors of the skin. An updated review of an ever‐growing list of lesions , 2009, Journal of cutaneous pathology.

[88]  E. Simpson,et al.  Frequent somatic mutations of GNAQ in uveal melanoma and blue nevi , 2008, Nature.

[89]  D. Hunter,et al.  Genetic variants in pigmentation genes, pigmentary phenotypes, and risk of skin cancer in Caucasians , 2009, International journal of cancer.

[90]  B. Marinari,et al.  IKKalpha is a p63 transcriptional target involved in the pathogenesis of ectodermal dysplasias. , 2009, The Journal of investigative dermatology.

[91]  C. Erickson,et al.  The making of a melanocyte: the specification of melanoblasts from the neural crest , 2008, Pigment cell & melanoma research.

[92]  D. Elder,et al.  MC1R variants increase risk of melanomas harboring BRAF mutations. , 2008, The Journal of investigative dermatology.

[93]  E. Epstein Basal cell carcinomas: attack of the hedgehog , 2008, Nature Reviews Cancer.

[94]  T. M. Rünger C-->T transition mutations are not solely UVB-signature mutations, because they are also generated by UVA. , 2008, The Journal of investigative dermatology.

[95]  D. Pinkel,et al.  Distribution and significance of occult intraepidermal tumor cells surrounding primary melanoma. , 2008, The Journal of investigative dermatology.

[96]  Jane Fridlyand,et al.  Academic Editor: Jonathan Rees, University of Edinburgh, United Kingdom , 2007 .

[97]  P. Itin,et al.  Five new CYLD mutations in skin appendage tumors and evidence that aspartic acid 681 in CYLD is essential for deubiquitinase activity. , 2008, The Journal of investigative dermatology.

[98]  T. M. Rünger,et al.  Mechanisms of mutation formation with long‐wave ultraviolet light (UVA) , 2008, Photodermatology, photoimmunology & photomedicine.

[99]  R. Paus,et al.  Cylindromatosis and the CYLD gene: new lessons on the molecular principles of epithelial growth control , 2007, Bioessays.

[100]  M. Landthaler,et al.  PTCH mutations are not mainly involved in the pathogenesis of sporadic trichoblastomas. , 2007, Human pathology.

[101]  T. M. Rünger How different wavelengths of the ultraviolet spectrum contribute to skin carcinogenesis: the role of cellular damage responses. , 2007, The Journal of investigative dermatology.

[102]  F. Watt,et al.  Dual role of inactivating Lef1 mutations in epidermis: tumor promotion and specification of tumor type. , 2007, Cancer research.

[103]  Arie Perry,et al.  Transcriptomic versus Chromosomal Prognostic Markers and Clinical Outcome in Uveal Melanoma , 2007, Clinical Cancer Research.

[104]  D. Pinkel,et al.  Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. , 2007, The Journal of investigative dermatology.

[105]  D. Pinkel,et al.  Somatic activation of KIT in distinct subtypes of melanoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[106]  Ian Smyth,et al.  Human sebaceous tumors harbor inactivating mutations in LEF1 , 2006, Nature Medicine.

[107]  K. Schulmeister,et al.  Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells. , 2006, The Journal of investigative dermatology.

[108]  B. Bastian,et al.  Distinguishing melanocytic nevi from melanoma by DNA copy number changes: comparative genomic hybridization as a research and diagnostic tool , 2006, Dermatologic therapy.

[109]  K. Urabe,et al.  beta-Catenin mutation and its nuclear localization are confirmed to be frequent causes of Wnt signaling pathway activation in pilomatricomas. , 2006, Journal of dermatological science.

[110]  J. Fridlyand,et al.  Distinct sets of genetic alterations in melanoma. , 2005, The New England journal of medicine.

[111]  B. Bastian,et al.  Genomic Analysis of Blue Nevi and Related Dermal Melanocytic Proliferations , 2005, The American journal of surgical pathology.

[112]  M. Scott,et al.  Communicating with Hedgehogs , 2005, Nature Reviews Molecular Cell Biology.

[113]  Daniel Pinkel,et al.  Classifying melanocytic tumors based on DNA copy number changes. , 2003, The American journal of pathology.

[114]  D. Pinkel,et al.  Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. , 2002, The American journal of pathology.

[115]  D. Pinkel,et al.  Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. , 2000, The American journal of pathology.

[116]  T. Godfrey,et al.  Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. , 2000, Cancer research.