Finite Element Analysis of Structural Instability Using an Implicit/Explicit Switching Technique

In this paper, we present a study of finite element analysis (FEA) of structural instability by using a switching implicit-explicit algorithm embedded into the finite element method. Snap-through or snap-back buckling problems often cause divergence of the finite element method if arc-length methods are not used. The origin of divergence is often associated with critical points. An alternative to the latter is considered herein, the implicit–explicit FEA. The numerical results showed the effectiveness of this switching technique for solving divergence when simulating structural instabilities such as buckling of an elastic–plastic arch.

[1]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[2]  E. A. de Souza Neto,et al.  On the determination of the path direction for arc-length methods in the presence of bifurcations and `snap-backs' , 1999 .

[3]  Thomas J. R. Hughes,et al.  Implicit-explicit finite elements in nonlinear transient analysis , 1979 .

[4]  E. A. de Souza Neto,et al.  A combined implicit–explicit algorithm in time for non‐linear finite element analysis , 2005 .

[5]  B. Irons,et al.  Techniques of Finite Elements , 1979 .

[6]  Y. Feng,et al.  ON THE SIGN OF THE DETERMINANT OF THE STRUCTURAL STIFFNESS MATRIX FOR DETERMINATION OF LOADING INCREMENT IN ARC‐LENGTH ALGORITHMS , 1997 .

[7]  Chunlei Liang,et al.  A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured triangular grids , 2009 .

[8]  E. A. de Souza Neto,et al.  A fast, one-equation integration algorithm for the Lemaitre ductile damage model , 2002 .

[9]  R. Kannan,et al.  A Study of Viscous Flux Formulations for a p-Multigrid Spectral Volume Navier Stokes Solver , 2009, J. Sci. Comput..

[10]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[11]  C. Farhat,et al.  Mixed explicit/implicit time integration of coupled aeroelastic problems: Three‐field formulation, geometric conservation and distributed solution , 1995 .

[12]  Antonio Munjiza,et al.  An M(M−1K)m proportional damping in explicit integration of dynamic structural systems , 1998 .

[13]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[14]  D. R. J. Owen,et al.  Determination of travel directions in path-following methods , 1995 .

[15]  M. Kojic Stress integration procedures for inelastic material models within the finite element method , 2002 .

[16]  J. L. Curiel Sosa,et al.  Modeling of the Nonlinear Interface in Reinforced Concrete , 2010 .

[17]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  David R. Owen,et al.  A new criterion for determination of initial loading parameter in arc-length methods , 1996 .

[19]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[20]  K. Park Practical aspects of numerical time integration , 1977 .

[21]  Michael Ortiz,et al.  An analysis of a new class of integration algorithms for elastoplastic constitutive relations , 1986 .

[22]  E. A. de Souza Neto,et al.  An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains , 2004 .