Higher‐order surface FEM for incompressible Navier‐Stokes flows on manifolds

Stationary and instationary Stokes and Navier-Stokes flows are considered on two-dimensional manifolds, i.e., on curved surfaces in three dimensions. The higher-order surface FEM is used for the approximation of the geometry, velocities, pressure, and Lagrange multiplier to enforce tangential velocities. Individual element orders are employed for these various fields. Stream-line upwind stabilization is employed for flows at high Reynolds numbers. Applications are presented which extend classical benchmark test cases from flat domains to general manifolds. Highly accurate solutions are obtained and higher-order convergence rates are confirmed.

[1]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[2]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[3]  Dominique Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals - Second Edition , 2011 .

[4]  Alan Demlow,et al.  Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..

[5]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[6]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[7]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[8]  Thomas-Peter Fries,et al.  Higher-order meshing of implicit geometries - part II: Approximations on manifolds , 2017, ArXiv.

[9]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[10]  I. Nitschke,et al.  A finite element approach to incompressible two-phase flow on manifolds , 2012, Journal of Fluid Mechanics.

[11]  Arnold Reusken,et al.  Analysis of trace finite element methods for surface partial differential equations , 2015 .

[12]  Maxim A. Olshanskii,et al.  Incompressible fluid problems on embedded surfaces: Modeling and variational formulations , 2017, Interfaces and Free Boundaries.

[13]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[14]  Peter Hansbo,et al.  Finite element modeling of a linear membrane shell problem using tangential differential calculus , 2014 .

[15]  Arnold Reusken,et al.  A Higher Order Finite Element Method for Partial Differential Equations on Surfaces , 2016, SIAM J. Numer. Anal..

[16]  M. C. Delfour,et al.  Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.

[17]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[18]  A. Reusken,et al.  Numerical Methods for Two-phase Incompressible Flows , 2011 .

[19]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[20]  Boris Khesin,et al.  Euler and Navier–Stokes equations on the hyperbolic plane , 2012, Proceedings of the National Academy of Sciences.

[21]  T. Fries,et al.  Higher‐order accurate integration of implicit geometries , 2016 .

[22]  M. Gurtin,et al.  Addenda to our paper A continuum theory of elastic material surfaces , 1975 .

[23]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[24]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[25]  Charles M. Elliott,et al.  Unfitted Finite Element Methods Using Bulk Meshes for Surface Partial Differential Equations , 2013, SIAM J. Numer. Anal..

[26]  Tayfun E. Tezduyar,et al.  Stabilization Parameters in SUPG and PSPG Formulations , 2003 .

[27]  Howard Brenner,et al.  Interfacial transport processes and rheology , 1991 .

[28]  Dieter Bothe,et al.  On the Two-Phase Navier–Stokes Equations with Boussinesq–Scriven Surface Fluid , 2010 .

[29]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[30]  L. Scriven,et al.  Dynamics of a fluid interface Equation of motion for Newtonian surface fluids , 1960 .

[31]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[32]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[33]  T. Hughes,et al.  Two classes of mixed finite element methods , 1988 .

[34]  Axel Voigt,et al.  Solving the incompressible surface Navier-Stokes equation by surface finite elements , 2017, 1709.02803.

[35]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[36]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[37]  Yoshikazu Giga,et al.  Energetic variational approaches for incompressible fluid systems on an evolving surface , 2016 .

[38]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[39]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[40]  Marcelo H. Kobayashi,et al.  On the Navier–Stokes equations on manifolds with curvature , 2008 .

[41]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[42]  Maxim A. Olshanskii,et al.  A stabilized finite element method for advection-diffusion equations on surfaces , 2013, 1301.3741.

[43]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[44]  C. Chan,et al.  On the stationary Navier-Stokes flow with isotropic streamlines in all latitudes on a sphere or a 2D hyperbolic space , 2013, 1302.5448.

[45]  Samir Omerovic,et al.  Higher-order meshing of implicit geometries - part I: Integration and interpolation in cut elements , 2017, ArXiv.

[46]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[47]  Volker Gravemeier,et al.  The variational multiscale method for laminar and turbulent flow , 2006 .

[48]  M. Delfour,et al.  Tangential Differential Equations for Dynamical Thin/Shallow Shells , 1996 .

[49]  I. Babuska Error-bounds for finite element method , 1971 .