An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar

This article introduces and reviews recent work using a simple optimization technique for analysing the nonlinear stability of a state in a dynamical system. The technique can be used to identify the most efficient way to disturb a system such that it transits from one stable state to another. The key idea is introduced within the framework of a finite-dimensional set of ordinary differential equations (ODEs) and then illustrated for a very simple system of two ODEs which possesses bistability. Then the transition to turbulence problem in fluid mechanics is used to show how the technique can be formulated for a spatially-extended system described by a set of partial differential equations (the well-known Navier-Stokes equations). Within that context, the optimization technique bridges the gap between (linear) optimal perturbation theory and the (nonlinear) dynamical systems approach to fluid flows. The fact that the technique has now been recently shown to work in this very high dimensional setting augurs well for its utility in other physical systems.

[1]  B. Freisleben,et al.  Transient turbulence in plane Couette flow. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  T. Mullin,et al.  Finite-amplitude thresholds for transition in pipe flow , 2007, Journal of Fluid Mechanics.

[3]  Mohamed Gad-el-Hak,et al.  Flow Control: Passive, Active, and Reactive Flow Management , 2000 .

[4]  A. Lorenc,et al.  Atmospheric modelling, data assimilation and predictability. By Eugenia Kalnay. Cambridge University Press. 2003. pp. xxii + 341. ISBNs 0 521 79179 0, 0 521 79629 6. , 2003 .

[5]  Jeff Moehlis,et al.  A low-dimensional model for turbulent shear flows , 2004 .

[6]  O. Reynolds III. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels , 1883, Proceedings of the Royal Society of London.

[7]  Tomoaki Itano,et al.  The Dynamics of Bursting Process in Wall Turbulence , 2001 .

[8]  C. Cossu,et al.  Optimal secondary energy growth in a plane channel flow , 2007 .

[9]  A. Babloyantz,et al.  Low-dimensional chaos in an instance of epilepsy. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Zhiyue Zhang,et al.  Conditional Nonlinear Optimal Perturbations of a Two-Dimensional Quasigeostrophic Model , 2006 .

[11]  Andrew F. Bennett,et al.  Inverse Methods in Physical Oceanography: Bibliography , 1992 .

[12]  D. Barkley,et al.  Transient growth analysis of flow through a sudden expansion in a circular pipe , 2010 .

[13]  T. Ellingsen,et al.  Stability of linear flow , 1975 .

[14]  Kathryn M. Butler,et al.  Three‐dimensional optimal perturbations in viscous shear flow , 1992 .

[15]  Fully localised nonlinear energy growth optimals in pipe flow , 2014, 1408.1414.

[16]  J. Yorke,et al.  Turbulence transition and the edge of chaos in pipe flow. , 2007, Physical review letters.

[17]  The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part I: A Perfect Liquid , 2008 .

[18]  Eugenia Kalnay,et al.  Ensemble Forecasting at NMC: The Generation of Perturbations , 1993 .

[19]  M. Mu The sensitivity and stability of the ocean ’ s thermohaline circulation to finite amplitude perturbations , 2007 .

[20]  Hussaini M. Yousuff,et al.  A Self-Contained, Automated Methodology for Optimal Flow Control , 1997 .

[21]  Hui Xu,et al.  Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Niño predictions , 2014, Theoretical and Applied Climatology.

[22]  Wansuo Duan,et al.  Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model , 2013 .

[23]  C. P. Caulfield,et al.  Localization of flow structures using $\infty $ -norm optimization , 2013, Journal of Fluid Mechanics.

[24]  D. Viswanath,et al.  Stable manifolds and the transition to turbulence in pipe flow , 2008, Journal of Fluid Mechanics.

[25]  R. Nicolaides,et al.  A SELF-CONTAINED, AUTOMATED METHODOLOGY FOR OPTIMAL FLOW CONTROL VALIDATED FOR TRANSITION DELAY , 1995 .

[26]  C. Cossu,et al.  Secondary threshold amplitudes for sinuous streak breakdown , 2011 .

[27]  Donghai Wang,et al.  A study on precursors to blocking anomalies in climatological flows by using conditional nonlinear optimal perturbations , 2010 .

[28]  Alessandro Bottaro,et al.  Transient growth and minimal defects: Two possible initial paths of transition to turbulence in plane shear flows , 2004 .

[29]  Fabian Waleffe,et al.  Transition in shear flows. Nonlinear normality versus non‐normal linearity , 1995 .

[30]  Brian F. Farrell,et al.  Small Error Dynamics and the Predictability of Atmospheric Flows. , 1990 .

[31]  Searching for the fastest dynamo: laminar ABC flows. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Daan Lenstra,et al.  Mutually delay-coupled semiconductor lasers: Mode bifurcation scenarios , 2005 .

[33]  A. Roshko On the problem of turbulence , 2000 .

[34]  M. Uhlmann,et al.  The Significance of Simple Invariant Solutions in Turbulent Flows , 2011, 1108.0975.

[35]  Bruno Eckhardt,et al.  Localized edge states nucleate turbulence in extended plane Couette cells , 2009, Journal of Fluid Mechanics.

[36]  B. Eckhardt,et al.  Sensitive dependence on initial conditions in transition to turbulence in pipe flow , 2003, Journal of Fluid Mechanics.

[37]  Mu Mu,et al.  Similarities between Optimal Precursors that Trigger the Onset of Blocking Events and Optimally Growing Initial Errors in Onset Prediction , 2011 .

[38]  Dan S. Henningson,et al.  Linear and Nonlinear Optimal Control in Spatial Boundary Layers , 2002 .

[39]  S Cherubini,et al.  Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  S. Cherubini,et al.  Nonlinear optimal perturbations in a Couette flow: bursting and transition , 2013, Journal of Fluid Mechanics.

[41]  Transient Growth and Triggering in the Horizontal Rijke Tube , 2011 .

[42]  P. Drazin Introduction to Hydrodynamic Stability , 2002 .

[43]  Thomas Bewley,et al.  A Linear Systems Approach to Flow Control , 2007 .

[44]  H. Dijkstra,et al.  Optimal nonlinear excitation of decadal variability of the North Atlantic thermohaline circulation , 2013, Chinese Journal of Oceanology and Limnology.

[45]  Variational identification of minimal seeds to trigger transition in plane Couette flow , 2011, 1111.6654.

[46]  Qiang Wang,et al.  Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander , 2012, Advances in Atmospheric Sciences.

[47]  Brian F. Farrell,et al.  Optimal Excitation of Baroclinic Waves , 1989 .

[48]  P. Luchini,et al.  Adjoint Equations in Stability Analysis , 2014, 2404.17304.

[49]  Fazle Hussain,et al.  Coherent structure generation in near-wall turbulence , 2002, Journal of Fluid Mechanics.

[50]  D. Henningson,et al.  Optimal disturbances and bypass transition in boundary layers , 1999 .

[51]  Dan S. Henningson,et al.  Adjoint-based optimization of steady suction for disturbance control in incompressible flows , 2002, Journal of Fluid Mechanics.

[52]  M. Juniper Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass transition , 2010, Journal of Fluid Mechanics.

[53]  E. Hopf A mathematical example displaying features of turbulence , 1948 .

[54]  M. Mu,et al.  A Method to Find Perturbations That Trigger Blocking Onset: Conditional Nonlinear Optimal Perturbations , 2008 .

[55]  A. Bottaro,et al.  The initial stage of transition in pipe flow: role of optimal base-flow distortions , 2004, Journal of Fluid Mechanics.

[56]  Simone Zuccher,et al.  Algebraic growth in a Blasius boundary layer: optimal and robust control by mean suction in the nonlinear regime , 2004, Journal of Fluid Mechanics.

[57]  P. Schmid Nonmodal Stability Theory , 2007 .

[58]  C. P. Caulfield,et al.  Triggering turbulence efficiently in plane Couette flow , 2012, Journal of Fluid Mechanics.

[59]  P. Manneville,et al.  Local Versus Global Concepts in Hydrodynamic Stability Theory , 1997 .

[60]  P. Cvitanović,et al.  Geometry of the turbulence in wall-bounded shear flows: periodic orbits , 2010 .

[61]  E. Kalnay,et al.  Ensemble Forecasting at NCEP and the Breeding Method , 1997 .

[62]  R. Daley Atmospheric Data Analysis , 1991 .

[63]  M. Mu Nonlinear singular vectors and nonlinear singular values , 2000 .

[64]  C. P. Caulfield,et al.  Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number , 2014, Journal of Fluid Mechanics.

[65]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[66]  R. Kerswell,et al.  Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. , 2010, Physical review letters.

[67]  G. Taylor Stability of a Viscous Liquid Contained between Two Rotating Cylinders , 1923 .

[68]  R. Kerswell,et al.  Recent progress in understanding the transition to turbulence in a pipe , 2005 .

[69]  J. Yorke,et al.  Edge of chaos in a parallel shear flow. , 2006, Physical review letters.

[70]  Paolo Luchini,et al.  The effect of base flow variation on flow stability , 2003, Journal of Fluid Mechanics.

[71]  P. Schmid,et al.  Optimal energy growth and optimal control in swept Hiemenz flow , 2006, Journal of Fluid Mechanics.

[72]  W. Heisenberg Über Stabilität und Turbulenz von Flüssigkeitsströmen , 1924 .

[73]  W. Thomson 1. Stability of Fluid Motion.—Rectilineal Motion of Viscous Fluid between two Parallel Planes , 1888 .

[74]  R. Kerswell,et al.  Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos , 2011, Journal of Fluid Mechanics.

[75]  Alessandro Bottaro,et al.  Optimal perturbations for boundary layers subject to stream-wise pressure gradient , 2000 .

[76]  T. Schneider,et al.  A Linear Systems Approach to Flow Control , 2007 .

[77]  J. Robinet,et al.  Nonlinear control of unsteady finite-amplitude perturbations in the Blasius boundary-layer flow , 2013, Journal of Fluid Mechanics.

[78]  Jerry Westerweel,et al.  Turbulence transition in pipe flow , 2007 .

[79]  E. Reshotko Transient growth: A factor in bypass transition , 2001 .

[80]  Roger Temam,et al.  DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms , 2001, Journal of Fluid Mechanics.

[81]  D. Henningson,et al.  Minimal transition thresholds in plane Couette flow , 2013 .

[82]  Stephen Kitson,et al.  Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states , 2002 .

[83]  H. Dijkstra,et al.  Effects of nonlinear physical processes on optimal error growth in predictability experiments of the Kuroshio Large Meander , 2013 .

[84]  L. Rayleigh On the Stability, or Instability, of certain Fluid Motions , 1879 .

[85]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[86]  Henk A. Dijkstra,et al.  Conditional nonlinear optimal perturbations of the double-gyre ocean circulation , 2008 .

[87]  Jessika Weiss Stability And Transition In Shear Flows , 2016 .

[88]  P. Schmid,et al.  Stability and Transition in Shear Flows. By P. J. SCHMID & D. S. HENNINGSON. Springer, 2001. 556 pp. ISBN 0-387-98985-4. £ 59.50 or $79.95 , 2000, Journal of Fluid Mechanics.

[89]  Gauthier Hulot,et al.  An Introduction to Data Assimilation and Predictability in Geomagnetism , 2010 .

[90]  P. Schmid Analysis of fluid systems : stability , receptivity , sensitivity , 2013 .

[91]  J. Gibson,et al.  Visualizing the geometry of state space in plane Couette flow , 2007, Journal of Fluid Mechanics.

[92]  C. Cossu An optimality condition on the minimum energy threshold in subcritical instabilities , 2005 .

[93]  C. P. Caulfield,et al.  Designing a more nonlinearly stable laminar flow via boundary manipulation , 2013, Journal of Fluid Mechanics.

[94]  T. Cebeci Stability and Transition , 2004 .

[95]  T. Mullin Experimental Studies of Transition to Turbulence in a Pipe , 2011 .

[96]  Mu Mu,et al.  A new approach to the generation of initial perturbations for ensemble prediction: Conditional nonlinear optimal perturbation , 2008 .

[97]  L. Böberg,et al.  Onset of Turbulence in a Pipe , 1988 .

[98]  Matthew P. Juniper,et al.  Triggering in a Thermoacoustic System with Stochastic Noise , 2011 .

[99]  L. Trefethen,et al.  Low-dimensional models of subcritical transition to turbulence , 1997 .

[100]  Jan Barkmeijer Constructing Fast-Growing Perturbations for the Nonlinear Regime , 1996 .

[101]  B. Eckhardt Turbulence transition in shear flows: chaos in high-dimensional spaces , 2012 .

[102]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[103]  P. Schmid,et al.  Optimal energy growth in swept Hiemenz flow , 2006 .

[104]  Hui Xu,et al.  Dynamics of nonlinear error growth and season‐dependent predictability of El Niño events in the Zebiak–Cane model , 2009 .

[105]  Qiang Wang,et al.  An extension of conditional nonlinear optimal perturbation approach and its applications , 2010 .

[106]  P. G. Drazin,et al.  Introduction to Hydrodynamic Stability: Contents , 2002 .

[107]  P. Schmid,et al.  Analysis of Fluid Systems: Stability, Receptivity, SensitivityLecture notes from the FLOW-NORDITA Summer School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 2013 , 2014 .

[108]  L. Gustavsson Energy growth of three-dimensional disturbances in plane Poiseuille flow , 1981, Journal of Fluid Mechanics.

[109]  S. Grossmann The onset of shear flow turbulence , 2000 .

[110]  Martin Berggren,et al.  Numerical Solution of a Flow-Control Problem: Vorticity Reduction by Dynamic Boundary Action , 1998, SIAM J. Sci. Comput..

[111]  Brian F. Farrell,et al.  Optimal excitation of perturbations in viscous shear flow , 1988 .

[112]  D. Henningson,et al.  Transient growth on boundary layer streaks , 2005, Journal of Fluid Mechanics.

[113]  A. Bottaro,et al.  A purely nonlinear route to transition approaching the edge of chaos in a boundary layer , 2012 .

[114]  M. Mu,et al.  A Study of the North Atlantic Oscillation Using Conditional Nonlinear Optimal Perturbation , 2013 .

[115]  O. Zikanov On the instability of pipe Poiseuille flow , 1996 .

[116]  E. Lorenz A study of the predictability of a 28-variable atmospheric model , 1965 .

[117]  Stephen Childress,et al.  New Solutions of the Kinematic Dynamo Problem , 1970 .

[118]  Fan Wang,et al.  Seasonal variability of zonal heat advection in the mixed layer of the tropical Pacific , 2013, Chinese Journal of Oceanology and Limnology.

[119]  Luca Brandt,et al.  Towards minimal perturbations in transitional plane Couette flow. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[120]  Lennart S. Hultgren,et al.  Algebraic growth of disturbances in a laminar boundary layer , 1981 .

[121]  Dan S. Henningson,et al.  On stability of streamwise streaks and transition thresholds in plane channel flows , 1998, Journal of Fluid Mechanics.

[122]  Janusz Bialek,et al.  Power System Dynamics: Stability and Control , 2008 .

[123]  Peter J. Menck,et al.  How basin stability complements the linear-stability paradigm , 2013, Nature Physics.

[124]  T. Driscoll,et al.  A mostly linear model of transition to tur , 1995 .

[125]  Paolo Luchini,et al.  Görtler vortices: a backward-in-time approach to the receptivity problem , 1998, Journal of Fluid Mechanics.

[126]  W. Thomson,et al.  XXI. Stability of fluid motion (continued from the May and June numbers).—Rectilineal motion of viscous fluid between two parallel planes , 1887 .

[127]  Alessandro Bottaro,et al.  The minimal seed of turbulent transition in the boundary layer , 2011, Journal of Fluid Mechanics.

[128]  R. Kerswell,et al.  Lecture 9 : Triggering Transition : Towards Minimal Seeds , 2011 .

[129]  M. Landahl A note on an algebraic instability of inviscid parallel shear flows , 1980, Journal of Fluid Mechanics.

[130]  R. Sujith,et al.  Experimental investigation of noise induced triggering in thermoacoustic systems , 2013 .

[131]  L. Trefethen Spectra and pseudospectra , 2005 .

[132]  Gordon Erlebacher,et al.  Self-Contained Automated Methodology for Optimal Flow , 1995 .

[133]  P. Luchini Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations , 2000, Journal of Fluid Mechanics.

[134]  Hui Xu,et al.  Behaviors of nonlinearities modulating the El Niño events induced by optimal precursory disturbances , 2013, Climate Dynamics.

[135]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[136]  Alessandro Bottaro,et al.  Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows. , 2011, Physical review letters.

[137]  Jan Barkmeijer,et al.  Perturbations that optimally trigger weather regimes , 1995 .

[138]  Bin Wang,et al.  Conditional nonlinear optimal perturbation and its applications , 2003 .

[139]  Uwe Ehrenstein,et al.  Adjoint based optimization and control of a separated boundary-layer flow , 2013 .

[140]  Roberto Buizza,et al.  The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .

[141]  Max Gunzburger,et al.  Adjoint Equation-Based Methods for Control Problems in Incompressible, Viscous Flows , 2000 .

[142]  A. Bottaro,et al.  An optimal path to transition in a duct , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[143]  S. C. Reddy,et al.  Energy growth in viscous channel flows , 1993, Journal of Fluid Mechanics.

[144]  Simone Zuccher,et al.  Algebraic growth in a Blasius boundary layer: Nonlinear optimal disturbances , 2006 .

[145]  C. P. Caulfield,et al.  Variational framework for flow optimization using seminorm constraints. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.