Vanadate inhibits saltatory organelle movement in a permeabilized cell model.

[1]  R. Steinhardt,et al.  Observations on intracellular pH during cleavage of eggs of Xenopus laevis , 1981, The Journal of cell biology.

[2]  W. Shain,et al.  Batrachotoxin blocks saltatory organelle movement in electrically excitable neuroblastoma cells , 1981, Brain Research.

[3]  G. Zieve,et al.  A probe for flagellar dynein in the mammalian mitotic apparatus. , 1981, Journal of cell science.

[4]  W. Z. Cande,et al.  A permeabilized cell model for studying cell division: a comparison of anaphase chromosome movement and cleavage furrow constriction in lysed PtK1 cells , 1981, The Journal of cell biology.

[5]  D. Alkon,et al.  Motile statocyst cilia transmit rather than directly transduce mechanical stimuli , 1980, The Journal of cell biology.

[6]  W. Cande,et al.  A permeabilized cell model for studying cytokinesis using mammalian tissue culture cells , 1980, The Journal of cell biology.

[7]  T. Otter,et al.  Dynein-like Mg2+-ATPase in mitotic spindles isolated from sea urchin embryos (Strongylocentrotus droebachiensis) , 1980, The Journal of cell biology.

[8]  G. Kreutzberg,et al.  Experimental approach to test the role of actin in axonal transport , 1980, Brain Research.

[9]  M. M. Pratt The identification of a dynein ATPase in unfertilized sea urchin eggs. , 1980, Developmental biology.

[10]  E. Wang,et al.  Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells , 1978, The Journal of cell biology.

[11]  S. M. Wolniak,et al.  Chromosome movement in lysed mitotic cells is inhibited by vanadate , 1978, The Journal of cell biology.

[12]  M. Flavin,et al.  Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. , 1978, Biochemical and biophysical research communications.

[13]  Ira Pastan,et al.  The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM) , 1978, Cell.

[14]  G. Siggins,et al.  Effect of temperature on the rapid retrograde transport of microscopically visible intra-axonal organelles , 1977, Brain Research.

[15]  G. Siggins,et al.  Axonal transport of organelles visualized by light microscopy: Cinemicrographic and computer analysis , 1977, Brain Research.

[16]  R. Warner,et al.  Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. , 1977, The Journal of biological chemistry.

[17]  R. S. Smith,et al.  The movement of optically detectable organelles in myelinated axons of Xenopus laevis , 1974, The Journal of physiology.

[18]  J. Kirkpatrick,et al.  Visualization of axoplasmic flow in vitro by Nomarski microscopy. Comparison to rapid flow of radioactive proteins. , 1972, Brain research.

[19]  J. Dvorak,et al.  A controlled-environment culture system for high resolution light microscopy. , 1971, Experimental cell research.

[20]  J. J. Freed,et al.  THE ASSOCIATION OF A CLASS OF SALTATORY MOVEMENTS WITH MICROTUBULES IN CULTURED CELLS , 1970, The Journal of cell biology.

[21]  L. Rebhun Structural Aspects of Saltatory Particle Movement , 1967, The Journal of general physiology.

[22]  D. Mitchell,et al.  Dynein: the mechanochemical coupling adenosine triphosphatase of microtubule-based sliding filament mechanisms. , 1980, International review of cytology.

[23]  Y. Tonomura Muscle proteins, muscle contraction and cation transport , 1973 .

[24]  H. Hoffman-Berling Adenosintriphosphat als betriebsstoff von zellbewegungen , 1954 .