Synchrosqueezed Curvelet Transform for Two-Dimensional Mode Decomposition

This paper introduces the synchrosqueezed curvelet transform as an optimal tool for two-dimensional mode decomposition of wavefronts or banded wave-like components. The syn- chrosqueezed curvelet transform consists of a generalized curvelet transform with application depen- dent geometric scaling parameters, and a synchrosqueezing technique for a sharpened phase space representation. In the case of a superposition of banded wave-like components with well-separated wave-vectors, it is proved that the synchrosqueezed curvelet transform is capable of recognizing each component and precisely estimating local wave-vectors. A discrete analogue of the continuous transform and several clustering models for decomposition are proposed in detail. Some numeri- cal examples with synthetic and real data are provided to demonstrate the above properties of the proposed transform.

[1]  Lexing Ying,et al.  Synchrosqueezed Wave Packet Transform for 2D Mode Decomposition , 2013, SIAM J. Imaging Sci..

[2]  Anna Linderhed,et al.  Image Empirical Mode Decomposition: a New Tool for Image Processing , 2009, Adv. Data Sci. Adapt. Anal..

[3]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  P. Flandrin,et al.  Differential reassignment , 1997, IEEE Signal Processing Letters.

[5]  Felix J. Herrmann,et al.  Curvelet-based ground roll removal , 2006 .

[6]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[7]  Jean Claude Nunes,et al.  Image analysis by bidimensional empirical mode decomposition , 2003, Image Vis. Comput..

[8]  Thomas Y. Hou,et al.  Adaptive Data Analysis via Sparse Time-Frequency Representation , 2011, Adv. Data Sci. Adapt. Anal..

[9]  E. Candès,et al.  Continuous curvelet transform , 2003 .

[10]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[11]  E. Candès,et al.  Continuous curvelet transform: II. Discretization and frames , 2005 .

[12]  Robert G. Clapp,et al.  (t,x) domain, pattern‐based ground roll removal , 2000 .

[13]  T. Hou,et al.  Data-driven time-frequency analysis , 2012, 1202.5621.

[14]  I. Daubechies,et al.  Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .

[15]  Patrick Flandrin,et al.  Improving the readability of time-frequency and time-scale representations by the reassignment method , 1995, IEEE Trans. Signal Process..

[16]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[17]  Steven R. Long,et al.  APPLICATIONS OF HHT IN IMAGE ANALYSIS , 2005 .

[18]  Stanley Osher,et al.  Empirical Transforms . Wavelets , Ridgelets and Curvelets revisited , 2013 .

[19]  Norden E. Huang,et al.  The Multi-Dimensional Ensemble Empirical Mode Decomposition Method , 2009, Adv. Data Sci. Adapt. Anal..

[20]  Zhaohua Wu,et al.  A Variant of the EMD Method for Multi-Scale Data , 2009, Adv. Data Sci. Adapt. Anal..

[21]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[22]  Anna Linderhed Variable Sampling of the Empirical Mode Decomposition of Two-Dimensional Signals , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[23]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[24]  Patrick Flandrin,et al.  Time-Frequency/Time-Scale Reassignment , 2003 .

[25]  Thomas Y. Hou,et al.  Convergence of a data-driven time-frequency analysis method , 2013, ArXiv.

[26]  Mirko van der Baan,et al.  PP/PS Wavefield separation by independent component analysis , 2006 .

[27]  Jean Claude Nunes,et al.  Bidimensional Empirical Mode Decomposition Modified for Texture Analysis , 2003, SCIA.

[28]  Norden E. Huang,et al.  On Instantaneous Frequency , 2009, Adv. Data Sci. Adapt. Anal..

[29]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[30]  L. Demanet,et al.  Wave atoms and sparsity of oscillatory patterns , 2007 .

[31]  Sandra M. Richwalski,et al.  Multi-component wavefield separation applied to high-resolution surface seismic data , 2001 .

[32]  Jérôme Gilles,et al.  Empirical Wavelet Transform , 2013, IEEE Transactions on Signal Processing.

[33]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).