Synchrosqueezed Curvelet Transform for Two-Dimensional Mode Decomposition
暂无分享,去创建一个
[1] Lexing Ying,et al. Synchrosqueezed Wave Packet Transform for 2D Mode Decomposition , 2013, SIAM J. Imaging Sci..
[2] Anna Linderhed,et al. Image Empirical Mode Decomposition: a New Tool for Image Processing , 2009, Adv. Data Sci. Adapt. Anal..
[3] N. Huang,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[4] P. Flandrin,et al. Differential reassignment , 1997, IEEE Signal Processing Letters.
[5] Felix J. Herrmann,et al. Curvelet-based ground roll removal , 2006 .
[6] Norden E. Huang,et al. Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..
[7] Jean Claude Nunes,et al. Image analysis by bidimensional empirical mode decomposition , 2003, Image Vis. Comput..
[8] Thomas Y. Hou,et al. Adaptive Data Analysis via Sparse Time-Frequency Representation , 2011, Adv. Data Sci. Adapt. Anal..
[9] E. Candès,et al. Continuous curvelet transform , 2003 .
[10] Richard E. Korf,et al. Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..
[11] E. Candès,et al. Continuous curvelet transform: II. Discretization and frames , 2005 .
[12] Robert G. Clapp,et al. (t,x) domain, pattern‐based ground roll removal , 2000 .
[13] T. Hou,et al. Data-driven time-frequency analysis , 2012, 1202.5621.
[14] I. Daubechies,et al. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .
[15] Patrick Flandrin,et al. Improving the readability of time-frequency and time-scale representations by the reassignment method , 1995, IEEE Trans. Signal Process..
[16] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[17] Steven R. Long,et al. APPLICATIONS OF HHT IN IMAGE ANALYSIS , 2005 .
[18] Stanley Osher,et al. Empirical Transforms . Wavelets , Ridgelets and Curvelets revisited , 2013 .
[19] Norden E. Huang,et al. The Multi-Dimensional Ensemble Empirical Mode Decomposition Method , 2009, Adv. Data Sci. Adapt. Anal..
[20] Zhaohua Wu,et al. A Variant of the EMD Method for Multi-Scale Data , 2009, Adv. Data Sci. Adapt. Anal..
[21] Sergey Fomel,et al. Applications of plane-wave destruction filters , 2002 .
[22] Anna Linderhed. Variable Sampling of the Empirical Mode Decomposition of Two-Dimensional Signals , 2005, Int. J. Wavelets Multiresolution Inf. Process..
[23] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[24] Patrick Flandrin,et al. Time-Frequency/Time-Scale Reassignment , 2003 .
[25] Thomas Y. Hou,et al. Convergence of a data-driven time-frequency analysis method , 2013, ArXiv.
[26] Mirko van der Baan,et al. PP/PS Wavefield separation by independent component analysis , 2006 .
[27] Jean Claude Nunes,et al. Bidimensional Empirical Mode Decomposition Modified for Texture Analysis , 2003, SCIA.
[28] Norden E. Huang,et al. On Instantaneous Frequency , 2009, Adv. Data Sci. Adapt. Anal..
[29] R. K. Shyamasundar,et al. Introduction to algorithms , 1996 .
[30] L. Demanet,et al. Wave atoms and sparsity of oscillatory patterns , 2007 .
[31] Sandra M. Richwalski,et al. Multi-component wavefield separation applied to high-resolution surface seismic data , 2001 .
[32] Jérôme Gilles,et al. Empirical Wavelet Transform , 2013, IEEE Transactions on Signal Processing.
[33] Emmanuel J. Candès,et al. The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).