Omnidirectional Robot Vision Using Conformal Geometric Computing

In this paper, we show how to use the conformal geometric algebra (CGA) as a framework to model the different catadioptric systems using the unified model (UM). This framework is well suited since it can not only represent points, lines and planes, but also point pairs, circles and spheres (geometric objects needed in the UM). We define our model using the great expressive capabilities of the CGA in a more general and simpler way, which allows an easier implementation in more complex applications. On the other hand, we also show how to recover the projective invariants from a catadioptric image using the inverse projection of the UM. Finally, we present applications in navigation and object recognition.

[1]  José Gaspar,et al.  Visual Path Following with a Catadioptric Panoramic Camera , 1999 .

[2]  Kostas Daniilidis,et al.  Paracatadioptric Camera Calibration , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Kostas Daniilidis,et al.  A Unifying Theory for Central Panoramic Systems and Practical Applications , 2000, ECCV.

[4]  Helder Araújo,et al.  Geometric Properties of Central Catadioptric Line Images , 2002, ECCV.

[5]  Tom,et al.  Epipolar Geometry for Panoramic Cameras Epipolar Geometry for Panoramic Cameras ? , 1998 .

[6]  Eduardo Bayro-Corrochano,et al.  Robot Perception and Action Using Conformal Geometric Algebra , 2005 .

[7]  David Hestenes,et al.  New algebraic tools for classical geometry , 2001 .

[8]  Eduardo Bayro Corrochano,et al.  Handbook of Geometric Computing , 2005 .

[9]  David Hestenes,et al.  Generalized homogeneous coordinates for computational geometry , 2001 .

[10]  Pertti Lounesto,et al.  Clifford Algebras and Spinor Operators , 1996 .

[11]  David A. Forsyth,et al.  3D Object Recognition Using Invariance , 1995, Artif. Intell..

[12]  Shree K. Nayar,et al.  A Theory of Single-Viewpoint Catadioptric Image Formation , 1999, International Journal of Computer Vision.

[13]  Shree K. Nayar,et al.  A theory of catadioptric image formation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[14]  Alfred M. Bruckstein,et al.  Omniview cameras with curved surface mirrors , 2000, Proceedings IEEE Workshop on Omnidirectional Vision (Cat. No.PR00704).

[15]  P. Lounesto Clifford Algebras and Spinors , 1997 .

[16]  Xianghua Ying,et al.  Catadioptric camera calibration using geometric invariants , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[17]  Eduardo Bayro-Corrochano,et al.  Analysis and Computation of Projective Invariants from Multiple Views in the Geometric Algebra Framework , 1999, Int. J. Pattern Recognit. Artif. Intell..

[18]  Eduardo Bayro-Corrochano,et al.  Omnidirectional Vision: Unified Model Using Conformal Geometry , 2004, ECCV.