Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases.

[1]  Aymeric Duclert,et al.  Multiplex Genome-Edited T-cell Manufacturing Platform for "Off-the-Shelf" Adoptive T-cell Immunotherapies. , 2015, Cancer research.

[2]  E. Wherry,et al.  Molecular and cellular insights into T cell exhaustion , 2015, Nature Reviews Immunology.

[3]  Israel Steinfeld,et al.  Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells , 2015, Nature Biotechnology.

[4]  Jong-il Kim,et al.  Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells , 2015, Nature Methods.

[5]  Gang Bao,et al.  Quantifying on- and off-target genome editing. , 2015, Trends in biotechnology.

[6]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[7]  Richard L. Frock,et al.  Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases , 2014, Nature Biotechnology.

[8]  Pamela A Shaw,et al.  Chimeric antigen receptor T cells for sustained remissions in leukemia. , 2014, The New England journal of medicine.

[9]  Daesik Kim,et al.  Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins , 2014, Genome research.

[10]  D. Atanackovic,et al.  TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer , 2014, Gene Therapy.

[11]  Wei-Ting Hwang,et al.  Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. , 2014, The New England journal of medicine.

[12]  David Baker,et al.  megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering , 2013, Nucleic acids research.

[13]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[14]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[15]  Christof von Kalle,et al.  TALEN-based gene correction for epidermolysis bullosa. , 2013, Molecular therapy : the journal of the American Society of Gene Therapy.

[16]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[17]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[18]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[19]  S. Bicciato,et al.  IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. , 2013, Blood.

[20]  Farshid Guilak,et al.  Synergistic and tunable human gene activation by combinations of synthetic transcription factors , 2013, Nature Methods.

[21]  D. Voytas,et al.  Efficient TALEN-mediated gene knockout in livestock , 2012, Proceedings of the National Academy of Sciences.

[22]  K. Mrasek,et al.  Common Fragile Sites: Genomic Hotspots of DNA Damage and Carcinogenesis , 2012, International journal of molecular sciences.

[23]  Sarah K. Baxter,et al.  Coupling endonucleases with DNA end–processing enzymes to drive gene disruption , 2012, Nature Methods.

[24]  Luigi Naldini,et al.  A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. , 2012, Blood.

[25]  Volker Brendel,et al.  TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction , 2012, Nucleic Acids Res..

[26]  David Baker,et al.  Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases , 2012, Nucleic acids research.

[27]  Christof von Kalle,et al.  Bioinformatic clonality analysis of next-generation sequencing-derived viral vector integration sites. , 2012, Human gene therapy methods.

[28]  Lei Zhang,et al.  Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer , 2012, Nature Medicine.

[29]  M. Porteus,et al.  Zinc fingers hit off target , 2011, Nature Medicine.

[30]  Jeffrey C. Miller,et al.  An unbiased genome-wide analysis of zinc-finger nuclease specificity , 2011, Nature Biotechnology.

[31]  A. Bagg,et al.  Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. , 2011, The New England journal of medicine.

[32]  Erin L. Doyle,et al.  Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting , 2011, Nucleic acids research.

[33]  B. Stoddard,et al.  Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. , 2011, Structure.

[34]  Stephan Wolf,et al.  Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing , 2010, Nature Protocols.

[35]  M. Lieber,et al.  The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. , 2010, Annual review of biochemistry.

[36]  Thuy D. Vo,et al.  Transient cold shock enhances zinc-finger nuclease–mediated gene disruption , 2010, Nature Methods.

[37]  C. Vink,et al.  Sleeping beauty transposition from nonintegrating lentivirus. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[38]  Steven A. Rosenberg,et al.  Generation of Tumor-Infiltrating Lymphocyte Cultures for Use in Adoptive Transfer Therapy for Melanoma Patients , 2003, Journal of immunotherapy.

[39]  R. Contreras,et al.  The 3' untranslated region of the human interferon-beta mRNA has an inhibitory effect on translation. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Jeffrey C. Miller,et al.  A rapid and general assay for monitoring endogenous gene modification. , 2010, Methods in molecular biology.