Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields

We consider a homoclinic bifurcation of a vector field in $\R^3$, where a one-dimensional unstable manifold of an equilibrium is contained in the two-dimensional stable manifold of this same equilibrium. How such one-dimensional connecting orbits arise is well understood, and software packages exist to detect and follow them in parameters.    In this paper we address an issue that it is far less well understood: how does the associated two-dimensional stable manifold change geometrically during the given homoclinic bifurcation? This question can be answered with the help of advanced numerical techniques. More specifically, we compute two-dimensional manifolds, and their one-dimensional intersection curves with a suitable cross-section, via the numerical continuation of orbit segments as solutions of a boundary value problem. In this way, we are able to explain how homoclinic bifurcations may lead to quite dramatic changes of the overall dynamics. This is demonstrated with two examples. We first consider a Shilnikov bifurcation in a semiconductor laser model, and show how the associated change of the two-dimensional stable manifold results in the creation of a new basin of attraction. We then investigate how the basins of the two symmetrically related attracting equilibria change to give rise to preturbulence in the first homoclinic explosion of the Lorenz system.

[1]  Björn Sandstede,et al.  Homoclinic and heteroclinic bifurcations in vector fields , 2010 .

[2]  Taegeun Noh Shil'nikov chaos in the oxidation of formic acid with bismuth ion on Pt ring electrode , 2009 .

[3]  Bernd Krauskopf,et al.  Visualizing global manifolds during the transition to chaos in the Lorenz system , 2009, Topology-Based Methods in Visualization II.

[4]  Bernd Krauskopf,et al.  A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .

[5]  Bernd Krauskopf,et al.  Tangency Bifurcations of Global Poincaré Maps , 2008, SIAM J. Appl. Dyn. Syst..

[6]  Pascal Besnard,et al.  Synchronization on excitable pulses in optically injected semiconductor lasers , 2008, SPIE Photonics Europe.

[7]  Arthur Sherman,et al.  Resetting Behavior in a Model of Bursting in Secretory Pituitary Cells: Distinguishing Plateaus from Pseudo-Plateaus , 2008, Bulletin of mathematical biology.

[8]  Edgar Knobloch,et al.  When Shil'nikov Meets Hopf in Excitable Systems , 2007, SIAM J. Appl. Dyn. Syst..

[9]  Randy C. Paffenroth,et al.  Elemental Periodic orbits Associated with the libration Points in the Circular Restricted 3-Body Problem , 2007, Int. J. Bifurc. Chaos.

[10]  B. Krauskopf,et al.  Visualizing curvature on the Lorenz manifold , 2007 .

[11]  D Goulding,et al.  Excitability in a quantum dot semiconductor laser with optical injection. , 2007, Physical review letters.

[12]  Bernd Krauskopf,et al.  Computing Two-Dimensional Global Invariant Manifolds in Slow-fast Systems , 2007, Int. J. Bifurc. Chaos.

[13]  Bernd Krauskopf,et al.  Computing Invariant Manifolds via the Continuation of Orbit Segments , 2007 .

[14]  Eusebius J. Doedel,et al.  Lecture Notes on Numerical Analysis of Nonlinear Equations , 2007 .

[15]  BelgiumE. J. Doedel CONVERGENCE OF A BOUNDARY VALUE DIFFERENCE EQUATION FOR COMPUTING PERIODIC SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATIONS , 2007 .

[16]  Bernd Krauskopf,et al.  Global bifurcations of the Lorenz manifold , 2006 .

[17]  B. Krauskopf,et al.  Visualizing the transition to chaos in the Lorenz system , 2006 .

[18]  Daan Lenstra,et al.  The dynamical complexity of optically injected semiconductor lasers , 2005 .

[19]  E. Doedel,et al.  Onset of chaotic symbolic synchronization between population inversions in an array of weakly coupled Bose-Einstein condensates. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Sebastian Wieczorek,et al.  Bifurcations of n-homoclinic orbits in optically injected lasers , 2005 .

[21]  Willy Govaerts,et al.  Numerical Periodic Normalization for Codim 1 Bifurcations of Limit Cycles , 2005, SIAM J. Numer. Anal..

[22]  Y. Kuznetsov,et al.  Numerical Continuation of Branch Points of Equilibria and Periodic orbits , 2005, Int. J. Bifurc. Chaos.

[23]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.

[24]  H. B. Keller,et al.  Elemental periodic orbits of the CR3BP : a brief selection of computational results , 2005 .

[25]  Michael E. Henderson,et al.  Computing Invariant Manifolds by Integrating Fat Trajectories , 2005, SIAM J. Appl. Dyn. Syst..

[26]  Bernd Krauskopf,et al.  Computing One-Dimensional Global Manifolds of Poincaré Maps by Continuation , 2005, SIAM J. Appl. Dyn. Syst..

[27]  L Glass,et al.  Apparent discontinuities in the phase-resetting response of cardiac pacemakers. , 2004, Journal of theoretical biology.

[28]  Bernd Krauskopf,et al.  Crocheting the Lorenz Manifold , 2004 .

[29]  E. Doedel,et al.  Defect-induced spatial coherence in the discrete nonlinear Schrödinger equation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  E. Doedel,et al.  Successive continuation for locating connecting orbits , 1996, Numerical Algorithms.

[31]  Alan R. Champneys,et al.  Homoclinic Branch Switching: a Numerical Implementation of Lin's Method , 2003, Int. J. Bifurc. Chaos.

[32]  Emilio Freire,et al.  Continuation of periodic orbits in conservative and Hamiltonian systems , 2003 .

[33]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[34]  E. J. Doedel,et al.  Computation of Periodic Solutions of Conservative Systems with Application to the 3-body Problem , 2003, Int. J. Bifurc. Chaos.

[35]  R. Paffenroth,et al.  THE COMPUTATION OF PERIODIC SOLUTIONS OF THE 3-BODY PROBLEM USING THE NUMERICAL CONTINUATION SOFTWARE AUTO , 2003 .

[36]  Willy Govaerts,et al.  Computation of Periodic Solution Bifurcations in ODEs Using Bordered Systems , 2003, SIAM J. Numer. Anal..

[37]  Sebastian Wieczorek,et al.  Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems , 2003 .

[38]  H. B. Keller,et al.  Path following in scientific computing and its implementation in AUTO , 2003 .

[39]  Bernd Krauskopf,et al.  Computing Geodesic Level Sets on Global (Un)stable Manifolds of Vector Fields , 2003, SIAM J. Appl. Dyn. Syst..

[40]  W. Beyn,et al.  Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .

[41]  Bernd Krauskopf,et al.  Visualizing the structure of chaos in the Lorenz system , 2002, Comput. Graph..

[42]  Alejandro J. Rodríguez-Luis,et al.  AN ANALYTICAL AND NUMERICAL STUDY OF A MODIFIED VAN DER POL OSCILLATOR , 2002 .

[43]  J. P. Wilson,et al.  Bogdanov-Takens bifurcation points and Sil'nikov homoclinicity in a simple power-system model of voltage collapse , 2002 .

[44]  Bo Deng,et al.  Food chain chaos due to Shilnikov's orbit. , 2002, Chaos.

[45]  E. Doedel,et al.  Stability and bifurcations of the figure-8 solution of the three-body problem. , 2002, Physical review letters.

[46]  Michael E. Henderson,et al.  Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.

[47]  Daan Lenstra,et al.  Multipulse excitability in a semiconductor laser with optical injection. , 2002, Physical review letters.

[48]  K. F. Chen,et al.  Observation of B+-ppK+ , 2002 .

[49]  Koen Engelborghs,et al.  Stability of piecewise polynomial collocation for computing periodic solutions of delay differential equations , 2002, Numerische Mathematik.

[50]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[51]  Shane D. Ross,et al.  Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design , 2001 .

[52]  T. Mullin,et al.  Homoclinic bifurcations in a liquid crystal flow , 2001, Journal of Fluid Mechanics.

[53]  E. Doedel,et al.  Bifurcation diagrams of frequency dependence of repolarization during long QT syndrome using the Luo-Rudy model of cardiac repolarization , 2000 .

[54]  Bernd Krauskopf,et al.  Resonant Homoclinic Flip Bifurcations , 2000 .

[55]  Daan Lenstra,et al.  Full length article A unifying view of bifurcations in a semiconductor laser subject to optical injection , 1999 .

[56]  Bernd Krauskopf,et al.  Two-dimensional global manifolds of vector fields. , 1999, Chaos.

[57]  John Guckenheimer,et al.  Numerical Analysis of Dynamical Systems , 1999 .

[58]  Bernd Krauskopf,et al.  Growing 1D and Quasi-2D Unstable Manifolds of Maps , 1998 .

[59]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[60]  D. Aronson,et al.  A codimension-two point associated with coupled Josephson junctions , 1997 .

[61]  T. Endo,et al.  Shilnikov orbits in an autonomous third-order chaotic phase-locked loop , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[62]  Roger L. Kraft Hyperbolicity & Sensitive Chaotic Dynamics at Homoclinic Bifurcations (J. Palis and F. Taken) , 1996, SIAM Rev..

[63]  Björn Sandstede,et al.  A numerical toolbox for homoclinic bifurcation analysis , 1996 .

[64]  E. J. DoedelJanuary Auto94p: an Experimental Parallel Version of Auto Auto94p : an Experimental Parallel Version of Auto , 1995 .

[65]  Mark J. Friedman,et al.  On locating connecting orbits , 1994 .

[66]  Uri M. Ascher,et al.  Collocation Software for Boundary Value Differential-Algebraic Equations , 1994, SIAM J. Sci. Comput..

[67]  Wolf-Jürgen Beyn,et al.  On well-posed problems for connecting orbits in dynamical systems , 1994 .

[68]  E. Doedel,et al.  On Locating Homoclinic and Heteroclinic Orbits , 1993 .

[69]  Alastair M. Rucklidge,et al.  Chaos in a low-order model of magnetoconvection , 1993 .

[70]  J. Feroe Homoclinic orbits in a parametrized saddle-focus system , 1993 .

[71]  Andrey Shilnikov,et al.  On bifurcations of the Lorenz attractor in the Shimizu-Morioka model , 1993 .

[72]  Mark J. Friedman,et al.  Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study , 1993 .

[73]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[74]  Mark J. Friedman,et al.  Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .

[75]  Xiao-Biao Lin,et al.  Using Melnikov's method to solve Silnikov's problems , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[76]  Mark J. Friedman,et al.  Numerical computation of heteroclinic orbits , 1989 .

[77]  J. L. Hudson,et al.  Shil'nikov chaos during copper electrodissolution , 1988 .

[78]  Hans G. Othmer,et al.  The dynamics of coupled current-biased Josephson junctions , 1988 .

[79]  E. Doedel,et al.  Optimization in bifurcation problems part II: Numerical method and applications , 1987 .

[80]  E. Doedel,et al.  Optimization in bifurcation problems part I: Theory and illustration , 1987 .

[81]  E. Doedel,et al.  Optimization in Bifurcation Problems using a Continuation Method , 1987 .

[82]  D. Aronson,et al.  Bistable Behavior in Coupled Oscillators , 1986 .

[83]  A Numerical Analysis of Wave Phenomena in a Reaction Diffusion Model , 1986 .

[84]  E. J. Doedel,et al.  Numerical methods for hope bifurcation and continuation of periodic solution paths , 1985 .

[85]  E. Doedel,et al.  Mathematical Analysis of Immobilized Enzyme Systems , 1985 .

[86]  Colin Sparrow,et al.  Local and global behavior near homoclinic orbits , 1984 .

[87]  E. Doedel,et al.  Optimal control of systems with multiple steady-states , 1984 .

[88]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[89]  E. Doedel,et al.  Numerical computation of periodic solution branches and oscillatory dynamics of the stirred tank reactor with A → B → C reactions , 1983 .

[90]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[91]  J. Palis,et al.  Geometric theory of dynamical systems , 1982 .

[92]  G. Reddien Computation of bifurcation branches using projection methods , 1981 .

[93]  Eusebius J. Doedel,et al.  Numerical Methods for Boundary Value Problems. , 1981 .

[94]  Carles Perelló,et al.  Intertwining invariant manifolds and the lorenz attractor , 1980 .

[95]  James A. Yorke,et al.  Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model , 1979 .

[96]  James A. Yorke,et al.  Preturbulence: A regime observed in a fluid flow model of Lorenz , 1979 .

[97]  E. Doedel The Construction of Finite Difference Approximations to Ordinary Differential Equations , 1978 .

[98]  Robert D. Russell,et al.  COLSYS - - A Collocation Code for Boundary - Value Problems , 1978, Codes for Boundary-Value Problems in Ordinary Differential Equations.

[99]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[100]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[101]  W. Kyner Invariant Manifolds , 1961 .

[102]  H. Shari Collocation Methods for Continuation Problems in Nonlinear Elliptic Pdes , 2022 .