Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields
暂无分享,去创建一个
Bernd Krauskopf | Hinke M. Osinga | Eusebius J. Doedel | Pablo Aguirre | B. Krauskopf | H. Osinga | E. Doedel | Pablo Aguirre
[1] Björn Sandstede,et al. Homoclinic and heteroclinic bifurcations in vector fields , 2010 .
[2] Taegeun Noh. Shil'nikov chaos in the oxidation of formic acid with bismuth ion on Pt ring electrode , 2009 .
[3] Bernd Krauskopf,et al. Visualizing global manifolds during the transition to chaos in the Lorenz system , 2009, Topology-Based Methods in Visualization II.
[4] Bernd Krauskopf,et al. A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .
[5] Bernd Krauskopf,et al. Tangency Bifurcations of Global Poincaré Maps , 2008, SIAM J. Appl. Dyn. Syst..
[6] Pascal Besnard,et al. Synchronization on excitable pulses in optically injected semiconductor lasers , 2008, SPIE Photonics Europe.
[7] Arthur Sherman,et al. Resetting Behavior in a Model of Bursting in Secretory Pituitary Cells: Distinguishing Plateaus from Pseudo-Plateaus , 2008, Bulletin of mathematical biology.
[8] Edgar Knobloch,et al. When Shil'nikov Meets Hopf in Excitable Systems , 2007, SIAM J. Appl. Dyn. Syst..
[9] Randy C. Paffenroth,et al. Elemental Periodic orbits Associated with the libration Points in the Circular Restricted 3-Body Problem , 2007, Int. J. Bifurc. Chaos.
[10] B. Krauskopf,et al. Visualizing curvature on the Lorenz manifold , 2007 .
[11] D Goulding,et al. Excitability in a quantum dot semiconductor laser with optical injection. , 2007, Physical review letters.
[12] Bernd Krauskopf,et al. Computing Two-Dimensional Global Invariant Manifolds in Slow-fast Systems , 2007, Int. J. Bifurc. Chaos.
[13] Bernd Krauskopf,et al. Computing Invariant Manifolds via the Continuation of Orbit Segments , 2007 .
[14] Eusebius J. Doedel,et al. Lecture Notes on Numerical Analysis of Nonlinear Equations , 2007 .
[15] BelgiumE. J. Doedel. CONVERGENCE OF A BOUNDARY VALUE DIFFERENCE EQUATION FOR COMPUTING PERIODIC SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATIONS , 2007 .
[16] Bernd Krauskopf,et al. Global bifurcations of the Lorenz manifold , 2006 .
[17] B. Krauskopf,et al. Visualizing the transition to chaos in the Lorenz system , 2006 .
[18] Daan Lenstra,et al. The dynamical complexity of optically injected semiconductor lasers , 2005 .
[19] E. Doedel,et al. Onset of chaotic symbolic synchronization between population inversions in an array of weakly coupled Bose-Einstein condensates. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] Sebastian Wieczorek,et al. Bifurcations of n-homoclinic orbits in optically injected lasers , 2005 .
[21] Willy Govaerts,et al. Numerical Periodic Normalization for Codim 1 Bifurcations of Limit Cycles , 2005, SIAM J. Numer. Anal..
[22] Y. Kuznetsov,et al. Numerical Continuation of Branch Points of Equilibria and Periodic orbits , 2005, Int. J. Bifurc. Chaos.
[23] John Guckenheimer,et al. A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.
[24] H. B. Keller,et al. Elemental periodic orbits of the CR3BP : a brief selection of computational results , 2005 .
[25] Michael E. Henderson,et al. Computing Invariant Manifolds by Integrating Fat Trajectories , 2005, SIAM J. Appl. Dyn. Syst..
[26] Bernd Krauskopf,et al. Computing One-Dimensional Global Manifolds of Poincaré Maps by Continuation , 2005, SIAM J. Appl. Dyn. Syst..
[27] L Glass,et al. Apparent discontinuities in the phase-resetting response of cardiac pacemakers. , 2004, Journal of theoretical biology.
[28] Bernd Krauskopf,et al. Crocheting the Lorenz Manifold , 2004 .
[29] E. Doedel,et al. Defect-induced spatial coherence in the discrete nonlinear Schrödinger equation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[30] E. Doedel,et al. Successive continuation for locating connecting orbits , 1996, Numerical Algorithms.
[31] Alan R. Champneys,et al. Homoclinic Branch Switching: a Numerical Implementation of Lin's Method , 2003, Int. J. Bifurc. Chaos.
[32] Emilio Freire,et al. Continuation of periodic orbits in conservative and Hamiltonian systems , 2003 .
[33] Willy Govaerts,et al. MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.
[34] E. J. Doedel,et al. Computation of Periodic Solutions of Conservative Systems with Application to the 3-body Problem , 2003, Int. J. Bifurc. Chaos.
[35] R. Paffenroth,et al. THE COMPUTATION OF PERIODIC SOLUTIONS OF THE 3-BODY PROBLEM USING THE NUMERICAL CONTINUATION SOFTWARE AUTO , 2003 .
[36] Willy Govaerts,et al. Computation of Periodic Solution Bifurcations in ODEs Using Bordered Systems , 2003, SIAM J. Numer. Anal..
[37] Sebastian Wieczorek,et al. Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems , 2003 .
[38] H. B. Keller,et al. Path following in scientific computing and its implementation in AUTO , 2003 .
[39] Bernd Krauskopf,et al. Computing Geodesic Level Sets on Global (Un)stable Manifolds of Vector Fields , 2003, SIAM J. Appl. Dyn. Syst..
[40] W. Beyn,et al. Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .
[41] Bernd Krauskopf,et al. Visualizing the structure of chaos in the Lorenz system , 2002, Comput. Graph..
[42] Alejandro J. Rodríguez-Luis,et al. AN ANALYTICAL AND NUMERICAL STUDY OF A MODIFIED VAN DER POL OSCILLATOR , 2002 .
[43] J. P. Wilson,et al. Bogdanov-Takens bifurcation points and Sil'nikov homoclinicity in a simple power-system model of voltage collapse , 2002 .
[44] Bo Deng,et al. Food chain chaos due to Shilnikov's orbit. , 2002, Chaos.
[45] E. Doedel,et al. Stability and bifurcations of the figure-8 solution of the three-body problem. , 2002, Physical review letters.
[46] Michael E. Henderson,et al. Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.
[47] Daan Lenstra,et al. Multipulse excitability in a semiconductor laser with optical injection. , 2002, Physical review letters.
[48] K. F. Chen,et al. Observation of B+-ppK+ , 2002 .
[49] Koen Engelborghs,et al. Stability of piecewise polynomial collocation for computing periodic solutions of delay differential equations , 2002, Numerische Mathematik.
[50] L. Chua,et al. Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .
[51] Shane D. Ross,et al. Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design , 2001 .
[52] T. Mullin,et al. Homoclinic bifurcations in a liquid crystal flow , 2001, Journal of Fluid Mechanics.
[53] E. Doedel,et al. Bifurcation diagrams of frequency dependence of repolarization during long QT syndrome using the Luo-Rudy model of cardiac repolarization , 2000 .
[54] Bernd Krauskopf,et al. Resonant Homoclinic Flip Bifurcations , 2000 .
[55] Daan Lenstra,et al. Full length article A unifying view of bifurcations in a semiconductor laser subject to optical injection , 1999 .
[56] Bernd Krauskopf,et al. Two-dimensional global manifolds of vector fields. , 1999, Chaos.
[57] John Guckenheimer,et al. Numerical Analysis of Dynamical Systems , 1999 .
[58] Bernd Krauskopf,et al. Growing 1D and Quasi-2D Unstable Manifolds of Maps , 1998 .
[59] J. A. Kuznecov. Elements of applied bifurcation theory , 1998 .
[60] D. Aronson,et al. A codimension-two point associated with coupled Josephson junctions , 1997 .
[61] T. Endo,et al. Shilnikov orbits in an autonomous third-order chaotic phase-locked loop , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.
[62] Roger L. Kraft. Hyperbolicity & Sensitive Chaotic Dynamics at Homoclinic Bifurcations (J. Palis and F. Taken) , 1996, SIAM Rev..
[63] Björn Sandstede,et al. A numerical toolbox for homoclinic bifurcation analysis , 1996 .
[64] E. J. DoedelJanuary. Auto94p: an Experimental Parallel Version of Auto Auto94p : an Experimental Parallel Version of Auto , 1995 .
[65] Mark J. Friedman,et al. On locating connecting orbits , 1994 .
[66] Uri M. Ascher,et al. Collocation Software for Boundary Value Differential-Algebraic Equations , 1994, SIAM J. Sci. Comput..
[67] Wolf-Jürgen Beyn,et al. On well-posed problems for connecting orbits in dynamical systems , 1994 .
[68] E. Doedel,et al. On Locating Homoclinic and Heteroclinic Orbits , 1993 .
[69] Alastair M. Rucklidge,et al. Chaos in a low-order model of magnetoconvection , 1993 .
[70] J. Feroe. Homoclinic orbits in a parametrized saddle-focus system , 1993 .
[71] Andrey Shilnikov,et al. On bifurcations of the Lorenz attractor in the Shimizu-Morioka model , 1993 .
[72] Mark J. Friedman,et al. Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study , 1993 .
[73] H. B. Keller,et al. NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .
[74] Mark J. Friedman,et al. Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .
[75] Xiao-Biao Lin,et al. Using Melnikov's method to solve Silnikov's problems , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[76] Mark J. Friedman,et al. Numerical computation of heteroclinic orbits , 1989 .
[77] J. L. Hudson,et al. Shil'nikov chaos during copper electrodissolution , 1988 .
[78] Hans G. Othmer,et al. The dynamics of coupled current-biased Josephson junctions , 1988 .
[79] E. Doedel,et al. Optimization in bifurcation problems part II: Numerical method and applications , 1987 .
[80] E. Doedel,et al. Optimization in bifurcation problems part I: Theory and illustration , 1987 .
[81] E. Doedel,et al. Optimization in Bifurcation Problems using a Continuation Method , 1987 .
[82] D. Aronson,et al. Bistable Behavior in Coupled Oscillators , 1986 .
[83] A Numerical Analysis of Wave Phenomena in a Reaction Diffusion Model , 1986 .
[84] E. J. Doedel,et al. Numerical methods for hope bifurcation and continuation of periodic solution paths , 1985 .
[85] E. Doedel,et al. Mathematical Analysis of Immobilized Enzyme Systems , 1985 .
[86] Colin Sparrow,et al. Local and global behavior near homoclinic orbits , 1984 .
[87] E. Doedel,et al. Optimal control of systems with multiple steady-states , 1984 .
[88] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[89] E. Doedel,et al. Numerical computation of periodic solution branches and oscillatory dynamics of the stirred tank reactor with A → B → C reactions , 1983 .
[90] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .
[91] J. Palis,et al. Geometric theory of dynamical systems , 1982 .
[92] G. Reddien. Computation of bifurcation branches using projection methods , 1981 .
[93] Eusebius J. Doedel,et al. Numerical Methods for Boundary Value Problems. , 1981 .
[94] Carles Perelló,et al. Intertwining invariant manifolds and the lorenz attractor , 1980 .
[95] James A. Yorke,et al. Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model , 1979 .
[96] James A. Yorke,et al. Preturbulence: A regime observed in a fluid flow model of Lorenz , 1979 .
[97] E. Doedel. The Construction of Finite Difference Approximations to Ordinary Differential Equations , 1978 .
[98] Robert D. Russell,et al. COLSYS - - A Collocation Code for Boundary - Value Problems , 1978, Codes for Boundary-Value Problems in Ordinary Differential Equations.
[99] L. P. Šil'nikov,et al. A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .
[100] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[101] W. Kyner. Invariant Manifolds , 1961 .
[102] H. Shari. Collocation Methods for Continuation Problems in Nonlinear Elliptic Pdes , 2022 .