Fuzzy stochastic data envelopment analysis with application to base realignment and closure (BRAC)

Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative efficiency of decision-making units (DMUs) on the basis of multiple inputs and outputs. Conventional DEA models assume that inputs and outputs are measured by exact values on a ratio scale. However, the observed values of the input and output data in real-world problems are often vague or random. Indeed, decision makers (DMs) may encounter a hybrid uncertain environment where fuzziness and randomness coexist in a problem. Several researchers have proposed various fuzzy methods for dealing with the ambiguous and random data in DEA. In this paper, we propose three fuzzy DEA models with respect to probability-possibility, probability-necessity and probability-credibility constraints. In addition to addressing the possibility, necessity and credibility constraints in the DEA model we also consider the probability constraints. A case study for the base realignment and closure (BRAC) decision process at the U.S. Department of Defense (DoD) is presented to illustrate the features and the applicability of the proposed models.

[1]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[2]  Adel Hatami-Marbini,et al.  A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making , 2011, Eur. J. Oper. Res..

[3]  Xiang Li,et al.  A Sufficient and Necessary Condition for Credibility Measures , 2006, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[4]  Baoding Liu,et al.  Toward Fuzzy Optimization without Mathematical Ambiguity , 2002, Fuzzy Optim. Decis. Mak..

[5]  András Prékopa Static Stochastic Programming Models , 1995 .

[6]  Jati K. Sengupta,et al.  Efficiency measurement in stochastic input-output systems† , 1982 .

[7]  Peijun Guo,et al.  Fuzzy DEA: a perceptual evaluation method , 2001, Fuzzy Sets Syst..

[8]  M. Khodabakhshi,et al.  An additive model approach for estimating returns to scale in imprecise data envelopment analysis , 2010 .

[9]  Yian-Kui Liu,et al.  Measurability criteria for fuzzy random vectors , 2006, Fuzzy Optim. Decis. Mak..

[10]  Andrey I. Kibzun,et al.  Stochastic Programming Problems with Probability and Quantile Functions , 1996 .

[11]  I. M. Stancu-Minasian,et al.  Stochastic Programming: with Multiple Objective Functions , 1985 .

[12]  Yian-Kui Liu,et al.  Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..

[13]  Jens Leth Hougaard,et al.  Theory and Methodology Fuzzy scores of technical e ciency , 1999 .

[14]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[15]  R. Kruse,et al.  Statistics with vague data , 1987 .

[16]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[17]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[18]  George J. Klir,et al.  On fuzzy-set interpretation of possibility theory , 1999, Fuzzy Sets Syst..

[19]  Teresa León,et al.  A fuzzy mathematical programming approach to the assessment of efficiency with DEA models , 2003, Fuzzy Sets Syst..

[20]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[21]  Didier Dubois,et al.  Possibility theory , 2018, Scholarpedia.

[22]  William W. Cooper,et al.  Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis , 2002, J. Oper. Res. Soc..

[23]  N. Petersen,et al.  Chance constrained efficiency evaluation , 1995 .

[24]  Andrey I. Kibzun,et al.  Stochastic Programming Problems with Probability and Quantile Functions , 1998 .

[25]  Adel Hatami-Marbini,et al.  An ideal-seeking fuzzy data envelopment analysis framework , 2010, Appl. Soft Comput..

[26]  J. Sengupta A fuzzy systems approach in data envelopment analysis , 1992 .

[27]  Masahiro Inuiguchi,et al.  Self-organizing fuzzy aggregation models to rank the objects with multiple attributes , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[28]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[29]  William W. Cooper,et al.  Stochastics and Statistics , 2001 .

[30]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[31]  Caroline M. Eastman,et al.  Review: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[32]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[33]  Ali Emrouznejad,et al.  Aggregating preference ranking with fuzzy Data Envelopment Analysis , 2010, Knowl. Based Syst..

[34]  William W. Cooper,et al.  Chapter 13 Satisficing DEA models under chance constraints , 1996, Ann. Oper. Res..

[35]  Shu-Cherng Fang,et al.  Fuzzy data envelopment analysis (DEA): a possibility approach , 2003, Fuzzy Sets Syst..

[36]  C. Hwang,et al.  Fuzzy Mathematical Programming: Methods and Applications , 1995 .

[38]  Adel Hatami-Marbini,et al.  A fully fuzzified data envelopment analysis model , 2011, Int. J. Inf. Decis. Sci..

[39]  Kenneth C. Land,et al.  Chance‐constrained data envelopment analysis , 1993 .

[40]  Jens Leth Hougaard,et al.  A simple approximation of productivity scores of fuzzy production plans , 2005, Fuzzy Sets Syst..

[41]  Huibert Kwakernaak,et al.  Fuzzy random variables--II. Algorithms and examples for the discrete case , 1979, Inf. Sci..

[42]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[43]  Yian-Kui Liu,et al.  Fuzzy Random Variables: A Scalar Expected Value Operator , 2003, Fuzzy Optim. Decis. Mak..

[44]  Chiang Kao,et al.  Fuzzy efficiency measures in data envelopment analysis , 2000, Fuzzy Sets Syst..

[45]  H. Zimmermann,et al.  Fuzzy sets theory and applications , 1986 .

[46]  Baoding Liu A Survey of Entropy of Fuzzy Variables , 2007 .

[47]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[48]  C. Kao,et al.  A mathematical programming approach to fuzzy efficiency ranking , 2003 .

[49]  坂和 正敏 Fuzzy sets and interactive multiobjective optimization , 1993 .

[50]  Jati K. Sengupta,et al.  Data envelopment analysis for efficiency measurement in the stochastic case , 1987, Comput. Oper. Res..

[51]  Baoding Liu Uncertainty Theory: An Introduction to its Axiomatic Foundations , 2004 .