Theoretical and Experimental Advances in High-Pressure Behaviors of Nanoparticles.

Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic-inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.

[1]  R. Comin,et al.  High-pressure studies of atomically thin van der Waals materials , 2023, Applied Physics Reviews.

[2]  L. Liz‐Marzán,et al.  Behavior of Au Nanoparticles under Pressure Observed by In Situ Small-Angle X-ray Scattering , 2022, ACS Nano.

[3]  Wentao Hu,et al.  Ultrastrong conductive in situ composite composed of nanodiamond incoherently embedded in disordered multilayer graphene , 2022, Nature Materials.

[4]  Mingxue Tang,et al.  From Biomass to Functional Crystalline Diamond Nanothread: Pressure-Induced Polymerization of 2,5-Furandicarboxylic Acid. , 2022, Journal of the American Chemical Society.

[5]  Tong Cai,et al.  Progress in all-inorganic heterometallic halide layered double perovskites , 2022, Trends in Chemistry.

[6]  Zhengce An,et al.  Optical multiplexing of upconversion in nanoparticles towards emerging applications , 2022, Chemical Engineering Journal.

[7]  A. Vinu,et al.  Low-Dimensional Metal-Halide Perovskites as High-Performance Materials for Memory Applications. , 2022, Small.

[8]  Zhongwu Wang,et al.  Nanocrystals with metastable high-pressure phases under ambient conditions , 2022, Science.

[9]  Bingbing Liu,et al.  Morphology Tuned Pressure Induced Amorphization in VO2(B) Nanobelts , 2022, Inorganics.

[10]  Bo Zou,et al.  Pressure‐Induced Metallization of Lead‐Free Halide Double Perovskite (NH4)2PtI6 , 2022, Advanced science.

[11]  G. Fang,et al.  Pressure‐Induced Indirect‐Direct Bandgap Transition of CsPbBr3 Single Crystal and Its Effect on Photoluminescence Quantum Yield , 2022, Advanced science.

[12]  Kai Wang,et al.  Abnormal Compressive Behaviors of Metal-Organic Frameworks under Hydrostatic Pressure. , 2022, Langmuir : the ACS journal of surfaces and colloids.

[13]  A. Ouerghi,et al.  Vanishing Confinement Regime in Terahertz HgTe Nanocrystals Studied under Extreme Conditions of Temperature and Pressure. , 2022, The journal of physical chemistry letters.

[14]  Wentao Hu,et al.  Coherent interfaces govern direct transformation from graphite to diamond , 2022, Nature.

[15]  Hao Liu,et al.  Effects of High Pressure on the Surface Plasmon Resonance of Copper and Silver Nanocrystals , 2022, Chemical Research in Chinese Universities.

[16]  Bingbing Liu,et al.  Pressure-Driven Abnormal Emission Blue-Shift of Lead-Free Halide Double Perovskite Cs2AgInCl6 Nanocrystals. , 2022, Inorganic chemistry.

[17]  M. Knudson,et al.  High pressure induced atomic and mesoscale phase behaviors of one-dimensional TiO2 anatase nanocrystals , 2022, MRS Bulletin.

[18]  Bingbing Liu,et al.  Size and Shape’s Effects on the High-Pressure Behavior of WS2 Nanomaterials , 2022, Materials.

[19]  X. Lü,et al.  Pressure-Induced Amorphization and Crystallization of Heterophase Pd Nanostructures. , 2022, Small.

[20]  Pengfei Lv,et al.  Warm white-light emission harvesting with enhanced color rendering index in conventional alloyed CdS0.7Se0.3 quantum dots , 2022, Materials Research Letters.

[21]  F. Peng,et al.  Pressure-Induced Phase Transition and Compression Properties of HfO2 Nanocrystals. , 2022, Inorganic chemistry.

[22]  S. Chu,et al.  Engineering Bright and Mechanosensitive Alkaline-Earth Rare-Earth Upconverting Nanoparticles. , 2022, Journal of Physical Chemistry Letters.

[23]  Ning Sui,et al.  Optical Properties of Inorganic Halide Perovskite Nanorods: Role of Anisotropy, Temperature, Pressure, and Nonlinearity , 2022, The Journal of Physical Chemistry C.

[24]  L. Liz‐Marzán,et al.  Correlation between Spectroscopic and Mechanical Properties of Gold Nanocrystals under Pressure , 2022, The Journal of Physical Chemistry C.

[25]  Bo Li,et al.  Ultrahigh Aggregation Induced Emission Efficiency in Multitwist-Based Luminogens under High Pressure. , 2021, The journal of physical chemistry letters.

[26]  Lindsey A. Hanson,et al.  Limits of Pseudoelasticity in Gold Nanocrystals , 2021, The Journal of Physical Chemistry C.

[27]  X. Lü,et al.  Excellent Carrier Transport Property of Hybrid Perovskites Sustained under High Pressures , 2021, ACS Energy Letters.

[28]  Ning Sui,et al.  Studying of the pressure-induced photoluminescence characteristics of CsPbI3 nanocrystals , 2021, Optical Materials.

[29]  B. Zou,et al.  Pressure‐Treated Engineering to Harvest Enhanced Green Emission in Mn‐Based Organic–Inorganic Metal Halides at Ambient Conditions , 2021, Advanced Functional Materials.

[30]  Ning Sui,et al.  Optical Property of Inorganic Halide Perovskite Hexagonal Nanocrystals , 2021, The Journal of Physical Chemistry C.

[31]  Qikun Wang,et al.  Comparison of reidite formation between zircon bulk and nanoparticles , 2021, Journal of Physics and Chemistry of Solids.

[32]  Bingbing Liu,et al.  Ultrahard bulk amorphous carbon from collapsed fullerene , 2021, Nature.

[33]  L. Liz‐Marzán,et al.  On the Stiffness of Gold at the Nanoscale , 2021, ACS nano.

[34]  Wei Zhao,et al.  Time-Resolved Photoluminescence Study of MnS/ZnS Core/Shell Quantum Dots at High Pressure and Low Temperature , 2021, The Journal of Physical Chemistry C.

[35]  M. Morana,et al.  Pressure Effects on Lead‐Free Metal Halide Perovskites: a Route to Design Optimized Materials for Photovoltaics , 2021, Solar RRL.

[36]  Feng Gao,et al.  Lead‐Free Double Perovskite Cs2AgBiBr6: Fundamentals, Applications, and Perspectives , 2021, Advanced Functional Materials.

[37]  X. Miao,et al.  Ultrafast crystallization mechanism of amorphous Ge15Sb85 unraveled by pressure-driven simulations , 2021 .

[38]  M. Tong,et al.  Pressure-Induced Piezochromism and Structure Transitions in Lead-Free Layered Cs4MnBi2Cl12 Quadruple Perovskite , 2021, ACS Applied Energy Materials.

[39]  H. Song,et al.  Rare earth doping in perovskite luminescent nanocrystals and photoelectric devices , 2021, Nano Select.

[40]  Bingbing Liu,et al.  High Pressure and High Temperature Induced Polymerization of C60 Solvates: The Effect of Intercalated Aromatic Solvents , 2021, The Journal of Physical Chemistry C.

[41]  Laizhi Sui,et al.  Harvesting Cool Daylight in Hybrid Organic–Inorganic Halides Microtubules through the Reservation of Pressure‐Induced Emission , 2021, Advanced materials.

[42]  Shanghai,et al.  Narrow-gap Semiconducting Superhard Amorphous Carbon with Superior Toughness , 2021, 2106.08163.

[43]  Bingbing Liu,et al.  Enhanced Photoluminescence and Photoresponsiveness of Eu3+ Ions‐Doped CsPbCl3 Perovskite Quantum Dots under High Pressure , 2021, Advanced Functional Materials.

[44]  R. Jin,et al.  Anomalous pressure-dependence in surface-modified silicon-derived nanoparticles , 2021, Nano Research.

[45]  T. Liang,et al.  Synthesis of paracrystalline diamond , 2021, Nature.

[46]  Tong Cai,et al.  Recent Advances in Ligand Design and Engineering in Lead Halide Perovskite Nanocrystals , 2021, Advanced science.

[47]  Wei Zhao,et al.  Pressure-Induced Anomalous Emission Behaviors of MnS/ZnS Quantum Dots , 2021 .

[48]  V. Kuzucu,et al.  Theoretical investigations on HgTe chalcogenide materials under high pressure , 2021 .

[49]  Bo Zou,et al.  Pressure-Induced Emission toward Harvesting Cold White Light from Warm White Light. , 2021, Angewandte Chemie.

[50]  X. Wen,et al.  The role of ligands in pressure-induced phase transition of gold nanoribbons , 2021 .

[51]  Laizhi Sui,et al.  Harvesting High-Quality White-Light Emitting and Remarkable Emission Enhancement in One-Dimensional Halide Perovskites Upon Compression , 2021, JACS Au.

[52]  Bingbing Liu,et al.  Molecular insertion regulates the donor-acceptor interactions in cocrystals for the design of piezochromic luminescent materials , 2021, Nature Communications.

[53]  R. Schaller,et al.  Colloidal quantum dot lasers , 2021, Nature Reviews Materials.

[54]  M. Knudson,et al.  Pressure Induced Assembly and Coalescence of Lead Chalcogenide Nanocrystals. , 2021, Journal of the American Chemical Society.

[55]  F. So,et al.  Metal Halide Perovskites for Laser Applications , 2021, Advanced Functional Materials.

[56]  B. Grzybowski,et al.  Transistors and logic circuits based on metal nanoparticles and ionic gradients , 2021, Nature Electronics.

[57]  N. Chen,et al.  Bulk Grain-Boundary Materials from Nanocrystals , 2021, Chem.

[58]  Xiaoli Huang,et al.  Interparticle Spacing Effect among Quantum Dots with High-Pressure Regulation , 2021, Nanomaterials.

[59]  X. Lü,et al.  Enhanced Photocurrent of All-Inorganic Two-Dimensional Perovskite Cs2PbI2Cl2 via Pressure-Regulated Excitonic Features. , 2021, Journal of the American Chemical Society.

[60]  Ning Sui,et al.  Manipulating the Photoluminescence and Carrier Characteristics of Excited FAPbBr3 Nanocrystals with Pressure , 2021 .

[61]  Yingchun Cheng,et al.  Defect Origin of Emission in CsCu2I3 and Pressure-Induced Anomalous Enhancement. , 2020, The journal of physical chemistry letters.

[62]  Ryan L. Hartman,et al.  Pressure‐Induced Formation and Mechanical Properties of 2D Diamond Boron Nitride , 2020, Advanced science.

[63]  M. Ge,et al.  Pressure-Induced Phase Transitions in Nanostructured Silicon , 2020 .

[64]  Wentao Hu,et al.  Discovery of carbon-based strongest and hardest amorphous material , 2020, National science review.

[65]  X. Lü,et al.  Regulating off-centering distortion maximizes photoluminescence in halide perovskites , 2020, National science review.

[66]  Wenge Yang,et al.  Suppressed Lattice Disorder for Large Emission Enhancement and Structural Robustness in Hybrid Lead Iodide Perovskite Discovered by High‐Pressure Isotope Effect , 2020, Advanced Functional Materials.

[67]  Bin Chen Exploring nanomechanics with high-pressure techniques , 2020 .

[68]  H. Zeng,et al.  Lead‐Free Halide Double Perovskites: Structure, Luminescence, and Applications , 2020, Small Structures.

[69]  Michael Gastegger,et al.  Machine Learning Force Fields , 2020, Chemical reviews.

[70]  Qinglin Wang,et al.  Structural and electrical transport properties of PbS quantum dots under high pressure , 2020 .

[71]  Xiaoyan Cui,et al.  Pressure-Engineered Optical and Charge Transport Properties of Mn2+/Cu2+ Codoped CsPbCl3 Perovskite Nanocrystals via Structural Progression. , 2020, ACS applied materials & interfaces.

[72]  K. Suslick,et al.  Mechanochemistry of Metal-Organic Frameworks under Pressure and Shock. , 2020, Accounts of chemical research.

[73]  Duong Nguyen Minh,et al.  Pressure-Induced Selective Amorphization of CsPbBr3 for the Purification of Cs4PbBr6 , 2020 .

[74]  D. He,et al.  Strength enhancement of nanocrystalline tungsten under high pressure , 2020 .

[75]  X. Lü,et al.  Reaching 90% Photoluminescence Quantum Yield in One-Dimensional Metal Halide C4N2H14PbBr4 by Pressure-Suppressed Nonradiative Loss. , 2020, Journal of the American Chemical Society.

[76]  Seunghwa Ryu,et al.  Stress-Induced Structural Transformations in Au Nanocrystals. , 2020, Nano letters.

[77]  Bingbing Liu,et al.  High-Pressure Behaviors of Ag2S Nanosheets: An in Situ High-Pressure X-Ray Diffraction Research , 2020, Nanomaterials.

[78]  R. Jin,et al.  Pressure-Induced Optical Transitions in Metal Nanoclusters. , 2020, ACS nano.

[79]  Bo Zou,et al.  Emerging Functional Materials under High Pressure toward Enhanced Properties , 2020 .

[80]  D. Ding,et al.  Pressure tuning of electron transfer rate in near-infrared PbS-anthraquinone complexes , 2020 .

[81]  Bo Zou,et al.  Thinking about the Development of High-Pressure Experimental Chemistry. , 2020, The journal of physical chemistry letters.

[82]  Pengfei Lv,et al.  Stability and band gap engineering of silica-confined lead halide perovskite nanocrystals under high pressure , 2020 .

[83]  J. Itié,et al.  The Mesoporous Metal-Organic Framework MIL-101 at High-Pressure. , 2020, Journal of the American Chemical Society.

[84]  Guofeng Li,et al.  Structural evolution and fusion behavior of gold supercrystals under stress: Insights from atomistic simulations , 2020 .

[85]  X. Lü,et al.  Pressure-Suppressed Carrier Trapping Leads to Enhanced Emission in Two-Dimensional Perovskite (HA)2(GA)Pb2I7. , 2020, Angewandte Chemie.

[86]  Blair K. Brettmann,et al.  Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals via Hydrostatic, Anisotropic Static, and Dynamic Pressures. , 2020, Angewandte Chemie.

[87]  Zhiwen Jin,et al.  Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells , 2020 .

[88]  Laizhi Sui,et al.  Tunable Color Temperatures and Emission Enhancement in 1D Halide Perovskites under High Pressure , 2020, Advanced Optical Materials.

[89]  Yutong Zhang,et al.  Pressure Engineered Optical Properties and Carrier Dynamics of FAPbBr3 Nanocrystals Encapsulated by Siliceous Nanosphere , 2020 .

[90]  R. Jin,et al.  Structural distortion and electron redistribution in dual-emitting gold nanoclusters , 2020, Nature Communications.

[91]  Bo Zou,et al.  Pressure Effects on the Electronic and Optical Properties in Low-Dimensional Metal Halide Perovskites. , 2020, The journal of physical chemistry letters.

[92]  Cui-Li Cui,et al.  Pressure Effects on Optoelectronic Properties of CsPbBr3 Nanocrystals , 2020 .

[93]  T. Vogt,et al.  Pressure Induced Enhancement of Broadband White Light Emission in Butylammonium Lead Bromide. , 2020, The journal of physical chemistry letters.

[94]  Xiaoli Huang,et al.  Broadband Emission Enhancement Induced by Self-Trapped Excited States in One-Dimensional EAPbI3 Perovskite under Pressure , 2020 .

[95]  L. Liz‐Marzán,et al.  Plasmonic Sensing of Refractive Index and Density in Methanol–Ethanol Mixtures at High Pressure , 2020 .

[96]  M. Knudson,et al.  X-Ray Diffraction and Electron Microscopy Studies of the Size Effects on Pressure-Induced Phase Transitions in CdS Nanocrystals , 2020, MRS Advances.

[97]  Bo Zou,et al.  Whether or Not Emission of Cs 4 PbBr 6 Nanocrystals: High-Pressure Experimental Evidence , 2020 .

[98]  Ruipeng Li,et al.  Shape Dependence of Pressure-Induced Phase Transition in CdS Semiconductor Nanocrystals. , 2020, Journal of the American Chemical Society.

[99]  Cheng Sun,et al.  Lasing Behavior of a Single ZnO Nanowire Resonating in Fabry–Perot Mode under Pressure , 2020, The Journal of Physical Chemistry C.

[100]  Liang Feng,et al.  Hierarchy in Metal–Organic Frameworks , 2020, ACS central science.

[101]  Siyu Lu,et al.  Pressure-Induced Emission Enhancements of Mn2+-Doped Cesium Lead Chloride Perovskite Nanocrystals , 2020 .

[102]  Wenge Yang,et al.  Pressure-Induced Multidimensional Assembly and Sintering of CuInS2 Nanoparticles into Lamellar Nanosheets with Band Gap Narrowing , 2020, ACS Applied Nano Materials.

[103]  Anita C Jones,et al.  Correlating Pressure‐Induced Emission Modulation with Linker Rotation in a Photoluminescent MOF , 2020, Angewandte Chemie.

[104]  M. Kunz,et al.  High-pressure strengthening in ultrafine-grained metals , 2020, Nature.

[105]  K. D. Wilson,et al.  Size-Dependent Pressure-Response of the Photoluminescence of CsPbBr3 Nanocrystals. , 2020, The journal of physical chemistry letters.

[106]  Bingxiao Liu,et al.  High pressure and high temperature induced polymerization of C60 quantum dots , 2020 .

[107]  Hua Zhou,et al.  Decisive Structural and Functional Characterization of Halide Perovskites with Synchrotron , 2020, Matter.

[108]  Mool C. Gupta,et al.  Relationship between the Nature of Monovalent Cations and Charge Recombination in Metal Halide Perovskites , 2020 .

[109]  Shunfang Li,et al.  Pressure‐Induced Structural Evolution and Bandgap Optimization of Lead‐Free Halide Double Perovskite (NH4)2SeBr6 , 2020, Advanced science.

[110]  D. Astruc Introduction: Nanoparticles in Catalysis. , 2020, Chemical reviews.

[111]  Y. Meng,et al.  Selected Negative Linear Compressibilities in the Metal-Organic Framework of [Cu(4,4'-bpy)2(H2O)2]·SiF6. , 2020, Inorganic chemistry.

[112]  Pengfei Lv,et al.  Pressure-Tuned Core/Shell Configuration Transition of Shell-Thickness-Dependent CdSe/CdS Nanocrystals. , 2020, The journal of physical chemistry letters.

[113]  X. Lü,et al.  Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies , 2020 .

[114]  Jiang Tang,et al.  Pressure-Induced Remarkable Enhancement of Self-Trapped Exciton Emission in One-Dimensional CsCu2I3 with Tetrahedral Unit. , 2020, Journal of the American Chemical Society.

[115]  M. Kunz,et al.  High-Pressure Phase Transitions in Densely Packed Nanocrystallites of TiO2-II , 2020 .

[116]  Yi Du,et al.  Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation , 2020, Nature Energy.

[117]  L. Lei,et al.  Abnormal physical behaviors of hafnium diboride under high pressure , 2019 .

[118]  H. Mao,et al.  Pressure-Induced Polymerization of Monosodium Acetylide: A Radical Reaction Initiated Topochemically , 2019, The Journal of Physical Chemistry C.

[119]  Ahmed S. Etman,et al.  Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite , 2019, Proceedings of the National Academy of Sciences.

[120]  Dae-Young Chung,et al.  Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes , 2019, Nature.

[121]  Ruipeng Li,et al.  Pressure-Induced Transformations of Three-Component Heterostructural Nanocrystals with CdS–Au2S Janus Nanoparticles as Hosts and Small Au Nanoparticles as Satellites , 2019, ACS Applied Nano Materials.

[122]  W. Mao,et al.  Pressure-Induced Emission (PIE) and Phase Transition of a Two-dimensional Halide Double Perovskite (BA)4AgBiBr8 (BA = CH3(CH2)3NH3+). , 2019, Angewandte Chemie.

[123]  Liang Feng,et al.  Controllable Synthesis of Metal-Organic Frameworks and Their Hierarchical Assemblies , 2019, Matter.

[124]  T. Vogt,et al.  Universal Gas-Uptake Behavior of a Zeolitic Imidazolate Framework ZIF-8 at High Pressure , 2019, The Journal of Physical Chemistry C.

[125]  Bo Zou,et al.  High-Pressure Band-Gap Engineering and Metallization in Perovskite Derivative Cs3Sb2I9. , 2019, ChemSusChem.

[126]  M. Yao,et al.  Pressure-Induced Emission Enhancement and Multi-color for 1, 2, 3, 4-tetraphenyl-1, 3-cyclopentadiene (TPC):Controlled Structure Evolution. , 2019, The journal of physical chemistry letters.

[127]  D. Machon,et al.  Revisiting Pressure-Induced Transitions in Mesoporous Anatase TiO2 , 2019, The Journal of Physical Chemistry C.

[128]  W. Xiang,et al.  Review on Recent Progress of All‐Inorganic Metal Halide Perovskites and Solar Cells , 2019, Advanced materials.

[129]  P. Lu,et al.  Tuning Pressure-Induced Phase Transitions, Amorphization, and Excitonic Emissions of 2D Hybrid Perovskites via Varying Organic Amine Cations , 2019, The Journal of Physical Chemistry C.

[130]  T. Taniguchi,et al.  Nonreversible Transition from the Hexagonal to Wurtzite Phase of Boron Nitride under High Pressure: Optical Properties of the Wurtzite Phase , 2019, The Journal of Physical Chemistry C.

[131]  K. Watanabe,et al.  High-Pressure Softening of the Out-of-Plane A2u(Transverse-Optic) Mode of Hexagonal Boron Nitride Induced by Dynamical Buckling , 2019, The Journal of Physical Chemistry C.

[132]  R. Long,et al.  Unravelling the Effects of Pressure-Induced Suppressed Electron-Hole Recombination in CsPbBr3 Perovskite: Time-Domain Ab Initio Analysis. , 2019, The journal of physical chemistry letters.

[133]  Weiwei Chen,et al.  CsPbBr3/CdS Core/Shell Structure Quantum Dots for Inverted Light-Emitting Diodes Application , 2019, Front. Chem..

[134]  Wenge Yang,et al.  Pressure engineering of photovoltaic perovskites , 2019, Materials Today.

[135]  Bingbing Liu,et al.  Semiconductor–metal transition in GaAs nanowires under high pressure , 2019, Chinese Physics B.

[136]  D. Blom,et al.  High-Pressure Phase Transitions of Morphologically Distinct Zn2SnO4 Nanostructures , 2019, ACS omega.

[137]  Xuedan Ma,et al.  Large Band Gap Narrowing and Prolonged Carrier Lifetime of (C4H9NH3)2PbI4 under High Pressure , 2019, Advancement of science.

[138]  Bingbing Liu,et al.  Pressure-induced isostructural phase transition in α-Ni(OH)2 nanowires , 2019, Chinese Physics B.

[139]  Xiaozhi Yan,et al.  Pressure-Induced Phase Transition and Band Gap Engineering in Propylammonium Lead Bromide Perovskite , 2019, The Journal of Physical Chemistry C.

[140]  Pengfei Lv,et al.  Pressure-Induced Emission Enhancements and Ripening of Zinc Blende Cadmium Selenide Nanocrystals , 2019, The Journal of Physical Chemistry C.

[141]  Yi Luo,et al.  Pressure-Induced Tunable Electron Transfer and Auger Recombination Rates in CdSe/ZnS Quantum Dot-Anthraquinone Complexes. , 2019, The journal of physical chemistry letters.

[142]  Fubo Tian,et al.  New Metallic Ordered Phase of Perovskite CsPbI3 under Pressure , 2019, Advanced science.

[143]  Alison B. Walker,et al.  Putting the Squeeze on Lead Iodide Perovskites: Pressure-Induced Effects To Tune Their Structural and Optoelectronic Behavior , 2019, Chemistry of materials : a publication of the American Chemical Society.

[144]  H. Fan,et al.  Pressure Induced Nanoparticle Phase Behavior, Property, and Applications. , 2019, Chemical reviews.

[145]  S. Lis,et al.  Emission color tuning and phase transition determination based on high-pressure up-conversion luminescence in YVO4: Yb3+, Er3+ nanoparticles , 2019, Journal of Luminescence.

[146]  J. Banfield,et al.  Revealing the ductility of nanoceramic MgAl_2O_4 , 2019, Journal of Materials Research.

[147]  Barry P Rand,et al.  Perovskites for Next-Generation Optical Sources. , 2019, Chemical reviews.

[148]  Peng Jin,et al.  Pressure-dependent photoluminescence of CdSe/ZnS quantum dots: Critical point of different pressure regimes , 2019, Physics Letters A.

[149]  Wenhui Shi,et al.  Structural Engineering of Low‐Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications , 2019, Advanced science.

[150]  Bo Zou,et al.  Pressure-Induced Emission (PIE) of One-Dimensional Organic Tin Bromide Perovskites. , 2019, Journal of the American Chemical Society.

[151]  Jiang Tang,et al.  Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications. , 2019, The journal of physical chemistry letters.

[152]  David Cahen,et al.  Photovoltaic solar cell technologies: analysing the state of the art , 2019, Nature Reviews Materials.

[153]  W. Mao,et al.  Tuning Optical and Electronic Properties in Low-Toxicity Organic-Inorganic Hybrid (CH3NH3)3Bi2I9 under High Pressure. , 2019, The journal of physical chemistry letters.

[154]  L. Liz‐Marzán,et al.  Monodisperse Gold Nanorods for High-Pressure Refractive Index Sensing. , 2019, The journal of physical chemistry letters.

[155]  Bo Zou,et al.  Pressure-Induced Emission Enhancement and Piezochromism of Triphenylethylene , 2019, The Journal of Physical Chemistry C.

[156]  Rui Wang,et al.  A Review of Perovskites Solar Cell Stability , 2019, Advanced Functional Materials.

[157]  Yi Luo,et al.  Lighting Up the Invisible Twisted Intramolecular Charge Transfer State by High Pressure. , 2019, The journal of physical chemistry letters.

[158]  D. Machon,et al.  Pressure-Induced Phase Transitions in TiO2 Rutile Nanorods , 2019, The Journal of Physical Chemistry C.

[159]  T. White,et al.  Pressure-Engineered Structural and Optical Properties of Two-Dimensional (C4H9NH3)2PbI4 Perovskite Exfoliated nm-Thin Flakes. , 2018, Journal of the American Chemical Society.

[160]  P. Mulvaney,et al.  Effects of Hydrostatic Pressure on the Surface Plasmon Resonance of Gold Nanocrystals. , 2019, ACS nano.

[161]  Jiang Tang,et al.  High Pressure Structural and Optical Properties of Two-Dimensional Hybrid Halide Perovskite (CH3NH3)3Bi2Br9. , 2019, Inorganic chemistry.

[162]  X. Miao,et al.  The Structure of Phase‐Change Chalcogenides and Their High‐Pressure Behavior , 2018, physica status solidi (RRL) – Rapid Research Letters.

[163]  L. Ceseracciu,et al.  Revealing Photoluminescence Modulation from Layered Halide Perovskite Microcrystals upon Cyclic Compression , 2018, Advanced materials.

[164]  Guangda Niu,et al.  Efficient and stable emission of warm-white light from lead-free halide double perovskites , 2018, Nature.

[165]  Siyu Lu,et al.  Pressure-induced emission of cesium lead halide perovskite nanocrystals , 2018, Nature Communications.

[166]  Hua Zhang,et al.  Pressure-Induced Phase Engineering of Gold Nanostructures. , 2018, Journal of the American Chemical Society.

[167]  Dong Han,et al.  Pressure-Induced Large Emission Enhancements of Cadmium Selenide Nanocrystals. , 2018, Journal of the American Chemical Society.

[168]  Brandon L. Peters,et al.  Mechanics of Gold Nanoparticle Superlattices at High Hydrostatic Pressures , 2018, The Journal of Physical Chemistry C.

[169]  Bo Zou,et al.  Pressure-Induced Emission Enhancement, Band-Gap Narrowing, and Metallization of Halide Perovskite Cs3 Bi2 I9. , 2018, Angewandte Chemie.

[170]  B. Rubenstein,et al.  Pressure-Induced Phase Transformation and Band-Gap Engineering of Formamidinium Lead Iodide Perovskite Nanocrystals. , 2018, The journal of physical chemistry letters.

[171]  Bo Zou,et al.  Pressure-Induced Structural Evolution and Optical Properties of Metal-Halide Perovskite CsPbCl3 , 2018, The Journal of Physical Chemistry C.

[172]  M. Nazeeruddin,et al.  Frontiers, opportunities, and challenges in perovskite solar cells: A critical review , 2018, Journal of Photochemistry and Photobiology C: Photochemistry Reviews.

[173]  B. Neves,et al.  Compression-Induced Modification of Boron Nitride Layers: A Conductive Two-Dimensional BN Compound. , 2018, ACS nano.

[174]  Dongpeng Yan,et al.  Recent Advances in Micro-/Nanostructured Metal-Organic Frameworks towards Photonic and Electronic Applications. , 2018, Chemistry.

[175]  G. Dukovic,et al.  Pressure Response of Photoluminescence in Cesium Lead Iodide Perovskite Nanocrystals , 2018 .

[176]  F. Du,et al.  Pressure-Tailored Band Gap Engineering and Structure Evolution of Cubic Cesium Lead Iodide Perovskite Nanocrystals , 2018 .

[177]  Muratahan Aykol,et al.  Thermodynamic limit for synthesis of metastable inorganic materials , 2018, Science Advances.

[178]  Wenge Yang,et al.  High-Pressure Band-Gap Engineering in Lead-Free Cs2 AgBiBr6 Double Perovskite. , 2017, Angewandte Chemie.

[179]  Yuguo Ma,et al.  Pressure induced the largest emission wavelength change in a single crystal , 2017, Dyes and Pigments.

[180]  Xiuling Li,et al.  Modulation of Metal and Insulator States in 2D Ferromagnetic VS2 by van der Waals Interaction Engineering , 2017, Advanced materials.

[181]  Kai Wang,et al.  Pressure-Induced Structural and Optical Properties of Inorganic Halide Perovskite CsPbBr3. , 2017, The journal of physical chemistry letters.

[182]  Weitao Zheng,et al.  Pressure Effects on Structure and Optical Properties in Cesium Lead Bromide Perovskite Nanocrystals. , 2017, Journal of the American Chemical Society.

[183]  Ruipeng Li,et al.  Pressure-Enabled Synthesis of Hetero-Dimers and Hetero-Rods through Intraparticle Coalescence and Interparticle Fusion of Quantum-Dot-Au Satellite Nanocrystals. , 2017, Journal of the American Chemical Society.

[184]  Ruipeng Li,et al.  Nanocube Superlattices of Cesium Lead Bromide Perovskites and Pressure‐Induced Phase Transformations at Atomic and Mesoscale Levels , 2017, Advanced materials.

[185]  M. Sinclair,et al.  Pressure compression of CdSe nanoparticles into luminescent nanowires , 2017, Science Advances.

[186]  Qinglin Wang,et al.  X-ray diffraction and spectroscopy study of nano-Eu 2 O 3 structural transformation under high pressure , 2017 .

[187]  S. Wuttke,et al.  Metal‐Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives , 2017 .

[188]  G. Grest,et al.  Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power , 2017, Nature Communications.

[189]  W. Mao,et al.  Pressure-Induced Metallization of the Halide Perovskite (CH3NH3)PbI3. , 2017, Journal of the American Chemical Society.

[190]  C. Krzeminski,et al.  Deformation Localization in Molecular Layers Constrained between Self-Assembled Au Nanoparticles. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[191]  Jian Lv,et al.  Materials discovery at high pressures , 2017 .

[192]  P. Ciancaglini,et al.  Biomedical applications of nanotechnology , 2017, Biophysical Reviews.

[193]  Q. Akkerman,et al.  Strongly emissive perovskite nanocrystal inks for high-voltage solar cells , 2016, Nature Energy.

[194]  Bo Zou,et al.  Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride. , 2016, The journal of physical chemistry letters.

[195]  Seth M. Cohen,et al.  Metal–organic frameworks for membrane-based separations , 2016 .

[196]  Ki‐Hyun Kim,et al.  Metal-Organic Frameworks as a Potential Platform for Selective Treatment of Gaseous Sulfur Compounds. , 2016, ACS applied materials & interfaces.

[197]  R. Jin,et al.  Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. , 2016, Chemical reviews.

[198]  M. Engel,et al.  Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. , 2016, Chemical reviews.

[199]  H. Furukawa,et al.  High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links. , 2016, Journal of the American Chemical Society.

[200]  Wenge Yang,et al.  Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets , 2016, Nature Communications.

[201]  Wenge Yang,et al.  Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites , 2016, Proceedings of the National Academy of Sciences.

[202]  H. García,et al.  Nanoparticles for Catalysis , 2016, Nanomaterials.

[203]  S. Kaskel,et al.  “The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications” , 2017 .

[204]  Quanjun Li,et al.  High pressure structural phase transitions of TiO2 nanomaterials , 2016 .

[205]  Simon Wall,et al.  Strain-engineered diffusive atomic switching in two-dimensional crystals , 2016, Nature Communications.

[206]  Ming Li,et al.  Highly Stable Zr(IV)-Based Metal-Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. , 2016, Journal of the American Chemical Society.

[207]  Yu Lin,et al.  High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties , 2016, ACS central science.

[208]  Zhitang Song,et al.  Phase‐Change Memory Materials by Design: A Strain Engineering Approach , 2016, Advanced materials.

[209]  W. Mao,et al.  Pressure tuning the lattice and optical response of silver sulfide , 2016, 1603.02022.

[210]  H. Fan,et al.  Pressure‐Tuned Structure and Property of Optically Active Nanocrystals , 2016, Advanced materials.

[211]  T. Duffy,et al.  High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures , 2016, Scientific Reports.

[212]  Christian Serre,et al.  Nanostructured metal–organic frameworks and their bio-related applications , 2016 .

[213]  M. Wuttig,et al.  Reversing the Resistivity Contrast in the Phase‐Change Memory Material GeSb2Te4 Using High Pressure , 2015 .

[214]  Gang Liu,et al.  Metal-Organic Framework-Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. , 2015, Small.

[215]  Yugang Sun Interfaced heterogeneous nanodimers , 2015 .

[216]  Demin Liu,et al.  Nanomedicine Applications of Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds: Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers. , 2015, Chemical reviews.

[217]  D. Akinwande,et al.  Pressure-Modulated Conductivity, Carrier Density, and Mobility of Multilayered Tungsten Disulfide. , 2015, ACS nano.

[218]  X. Lü,et al.  Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite. , 2015, Journal of the American Chemical Society.

[219]  Ruipeng Li,et al.  Pressure Processing of Nanocube Assemblies Toward Harvesting of a Metastable PbS Phase , 2015, Advanced materials.

[220]  Hongtao Yuan,et al.  Pressure induced metallization with absence of structural transition in layered molybdenum diselenide , 2015, Nature Communications.

[221]  Yan-Cheng Lin,et al.  Water-soluble CdTe nanocrystals under high pressure , 2015, Photonics West - Optoelectronic Materials and Devices.

[222]  Michael D. Wisser,et al.  Strain-induced modification of optical selection rules in lanthanide-based upconverting nanoparticles. , 2015, Nano letters.

[223]  W. Mao,et al.  Pressure-induced conductivity and yellow-to-black piezochromism in a layered Cu-Cl hybrid perovskite. , 2015, Journal of the American Chemical Society.

[224]  D. Akinwande,et al.  Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. , 2015, Nano letters.

[225]  T. Hanrath,et al.  The Strongest Particle: Size-Dependent Elastic Strength and Debye Temperature of PbS Nanocrystals. , 2014, The journal of physical chemistry letters.

[226]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[227]  H. Fan,et al.  Deviatoric stress-driven fusion of nanoparticle superlattices. , 2014, Nano letters.

[228]  Jianping Gao,et al.  Hydrogen-bonded structure and mechanical chiral response of a silver nanoparticle superlattice. , 2014, Nature materials.

[229]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[230]  Ruipeng Li,et al.  Stress-induced phase transformation and optical coupling of silver nanoparticle superlattices into mechanically stable nanowires , 2014, Nature Communications.

[231]  D. Akinwande,et al.  Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide , 2014, Nature Communications.

[232]  Yunqi Liu,et al.  Monolayer Hexagonal Boron Nitride Films with Large Domain Size and Clean Interface for Enhancing the Mobility of Graphene‐Based Field‐Effect Transistors , 2014, Advanced materials.

[233]  Steve Granick,et al.  Colloidal-sized metal-organic frameworks: synthesis and applications. , 2014, Accounts of chemical research.

[234]  Kenji Watanabe,et al.  Strong oxidation resistance of atomically thin boron nitride nanosheets. , 2014, ACS nano.

[235]  J. Kolny-Olesiak,et al.  Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. , 2013, ACS applied materials & interfaces.

[236]  Hossam Haick,et al.  Flexible sensors based on nanoparticles. , 2013, ACS nano.

[237]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[238]  J. Martínez‐Pastor,et al.  The effect of quantum size confinement on the optical properties of PbSe nanocrystals as a function of temperature and hydrostatic pressure , 2013, Nanotechnology.

[239]  Bingbing Liu,et al.  Morphology-Tuned Phase Transitions of Anatase TiO2 Nanowires under High Pressure , 2013 .

[240]  Byeongdu Lee,et al.  How "hollow" are hollow nanoparticles? , 2013, Journal of the American Chemical Society.

[241]  Bai Yang,et al.  High Pressure Phase Transition of ZnO/SiO2 Core/Shell Nanospheres , 2013 .

[242]  S. Kitagawa,et al.  Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing , 2013, Science.

[243]  H. Mao,et al.  Texture of Nanocrystalline Nickel: Probing the Lower Size Limit of Dislocation Activity , 2012, Science.

[244]  V. Levitas,et al.  Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure , 2012, Proceedings of the National Academy of Sciences.

[245]  T. Hanrath,et al.  Comparing the structural stability of PbS nanocrystals assembled in fcc and bcc superlattice allotropes. , 2012, Journal of the American Chemical Society.

[246]  F. Wise,et al.  Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. , 2012, Nature nanotechnology.

[247]  J. Recio,et al.  Compression of silver sulfide: X-ray diffraction measurements and total-energy calculations. , 2012, Inorganic chemistry.

[248]  E. Ma,et al.  Pressure tunes electrical resistivity by four orders of magnitude in amorphous Ge2Sb2Te5 phase-change memory alloy , 2012, Proceedings of the National Academy of Sciences.

[249]  G. Abstreiter,et al.  Pressure tuning of the optical properties of GaAs nanowires. , 2012, ACS nano.

[250]  L. Etgar,et al.  Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells. , 2012, ACS nano.

[251]  Xin Ma,et al.  High performance hybrid near-infrared LEDs using benzenedithiol cross-linked PbS colloidal nanocrystals , 2012 .

[252]  B. Kooi,et al.  Schottky barrier formation at amorphous-crystalline interfaces of GeSb phase change materials , 2012 .

[253]  Wenge Yang,et al.  Structural Stability and Compressibility Study for ZnO Nanobelts under High Pressure , 2012 .

[254]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[255]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[256]  Bingbing Liu,et al.  Effect of Grain Size on Pressure-Induced Structural Transition in Mn3O4 , 2012 .

[257]  E. Rabani,et al.  Metastability in pressure-induced structural transformations of CdSe/ZnS core/shell nanocrystals. , 2012, Nano letters.

[258]  E. Rabani,et al.  Transferable pair potentials for CdS and ZnS crystals. , 2012, The Journal of chemical physics.

[259]  H. Fan,et al.  Deviatoric stress driven formation of large single-crystal PbS nanosheet from nanoparticles and in situ monitoring of oriented attachment. , 2011, Journal of the American Chemical Society.

[260]  H. Mao,et al.  Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material , 2011, Proceedings of the National Academy of Sciences.

[261]  H. Mao,et al.  The structural transition behavior of CdSe/ZnS core/shell quantum dots under high pressure , 2011 .

[262]  L. Gracia,et al.  A Theoretical Study on the Pressure-Induced Phase Transitions in the Inverse Spinel Structure Zn2SnO4 , 2011 .

[263]  Wenge Yang,et al.  Multiple-step phase transformation in silver nanoplates under high pressure. , 2011, Small.

[264]  Byeongdu Lee,et al.  High-pressure structural stability and elasticity of supercrystals self-assembled from nanocrystals. , 2011, Nano letters.

[265]  Zaicheng Sun,et al.  Pressure-driven assembly of spherical nanoparticles and formation of 1D-nanostructure arrays. , 2010, Angewandte Chemie.

[266]  G. Zou,et al.  Pressure Induced Semiconductor-Semimetal Transition in WSe2 , 2010 .

[267]  K. Critchley,et al.  The role of order, nanocrystal size, and capping ligands in the collective mechanical response of three-dimensional nanocrystal solids. , 2010, Journal of the American Chemical Society.

[268]  V. Bulović,et al.  Colloidal quantum dot light-emitting devices , 2010, Nano reviews.

[269]  Byung-Ryool Hyun,et al.  PbSe nanocrystal excitonic solar cells. , 2009, Nano letters.

[270]  R. Ewing,et al.  High-Pressure Response of Zirconia Nanoparticles with an Alumina Shell , 2009 .

[271]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[272]  René Pool,et al.  Molecular simulations of interacting nanocrystals. , 2008, Nano letters.

[273]  Garnett W. Bryant,et al.  Metal‐nanoparticle plasmonics , 2008 .

[274]  Hyun Hwi Lee,et al.  Shape-Dependent Compressibility of TiO2 Anatase Nanoparticles , 2008 .

[275]  Younan Xia,et al.  Cubic to tetragonal phase transformation in cold-compressed Pd nanocubes. , 2008, Nano letters.

[276]  M. Zachariah,et al.  Mechano-chemical stability of gold nanoparticles coated with alkanethiolate SAMs. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[277]  M. Parrinello,et al.  Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials , 2007, 0708.1302.

[278]  J. Tominaga,et al.  Pressure-induced amorphization of quasibinary GeTe–Sb2Te3: The role of vacancies , 2007 .

[279]  E. Rafailov,et al.  Mode-locked quantum-dot lasers , 2007 .

[280]  Roald Hoffmann,et al.  The chemical imagination at work in very tight places. , 2007, Angewandte Chemie.

[281]  Peidong Yang,et al.  Shaping binary metal nanocrystals through epitaxial seeded growth. , 2007, Nature materials.

[282]  R. K. Sander,et al.  Optical properties of PbSe nanocrystal quantum dots under pressure , 2007 .

[283]  G. Moad,et al.  Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007) , 2007 .

[284]  Liberato Manna,et al.  Synthesis, properties and perspectives of hybrid nanocrystal structures. , 2006, Chemical Society reviews.

[285]  P. McMillan Chemistry at high pressure. , 2006, Chemical Society reviews.

[286]  Robert T. Downs,et al.  Morphology-tuned wurtzite-type ZnS nanobelts , 2005, Nature materials.

[287]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[288]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[289]  C. Brinker,et al.  Self-Assembly of Ordered, Robust, Three-Dimensional Gold Nanocrystal/Silica Arrays , 2004, Science.

[290]  H. Mao,et al.  The formation of sp3 bonding in compressed BN , 2004, Nature materials.

[291]  P. McMillan New materials from high pressure experiments: Challenges and opportunities , 2003 .

[292]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[293]  W. Goddard,et al.  Molecular simulation study of the c(4×2) superlattice structure of alkanethiol self-assembled monolayers on Au(111) , 2002 .

[294]  P. McMillan New materials from high-pressure experiments , 2002, Nature materials.

[295]  H. V. Swygenhoven,et al.  Grain Boundaries and Dislocations , 2002 .

[296]  A. Alivisatos,et al.  Threshold Size for Ambient Metastability of Rocksalt CdSe Nanocrystals , 2002 .

[297]  R. Lerner,et al.  Activation Volumes for Solid-Solid Transformations in Nanocrystals , 2001, Science.

[298]  B. Fultz,et al.  Nanocrystalline iron at high pressure , 2001 .

[299]  Jingbo Li,et al.  Optical spectra of CdSe nanocrystals under hydrostatic pressure , 2001 .

[300]  U. Banin,et al.  Observation of pressure-induced direct-to-indirect band gap transition in InP nanocrystals , 2000 .

[301]  A. Kurdyumov,et al.  Mechanisms of martensitic transformations in boron nitride and conditions of their development , 2000 .

[302]  D. Frost,et al.  Phase transformation and conductivity in nanocrystal PbS under pressure , 2000 .

[303]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[304]  U. Landman,et al.  Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites , 1998 .

[305]  Chen,et al.  Size Dependence of Structural Metastability in Semiconductor Nanocrystals , 1997, Science.

[306]  H. A. Carmona,et al.  Photoluminescence spectroscopy of self-assembled InAs quantum dots in strong magnetic field and under high pressure , 1997 .

[307]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[308]  S. Qadri,et al.  Pressure Induced Structural Transitions in Nanometer Size Particles of PbS , 1998 .

[309]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[310]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[311]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[312]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[313]  S. Tolbert,et al.  The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure , 1995 .

[314]  S. Tolbert,et al.  Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals , 1994, Science.

[315]  R. Cahn Metallic solid silicon , 1992, Nature.

[316]  R. Marcus Theory of Electron-Transfer Reaction Rates of Solvated Electrons , 1965 .

[317]  P. L. Smith,et al.  X-ray diffraction at ultra-high pressures , 1963 .

[318]  R. H. Wentorf Synthesis of the Cubic Form of Boron Nitride , 1961 .

[319]  A. M. Wahl Finite deformations of an elastic solid: by Francis D. Murnaghan. 140 pages, 15 × 23 cm. New York, John Wiley & Sons, Inc., 1951. Price, $4.00 , 1952 .

[320]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[321]  Xiaogang Liu Recent advances in frequency-converting inorganic nanomaterials , 2021 .

[322]  T. White,et al.  High‐Pressure‐Induced Comminution and Recrystallization of CH3NH3PbBr3 Nanocrystals as Large Thin Nanoplates , 2018, Advanced materials.

[323]  G. Grest,et al.  Modeling pressure-driven assembly of polymer coated nanoparticles , 2018 .

[324]  H. Mao,et al.  High-pressure studies with x-rays using diamond anvil cells , 2017, Reports on progress in physics. Physical Society.

[325]  Wenge Yang,et al.  Pressure‐Induced Bandgap Optimization in Lead‐Based Perovskites with Prolonged Carrier Lifetime and Ambient Retainability , 2017 .

[326]  Nripan Mathews,et al.  Current progress and future perspectives for organic/inorganic perovskite solar cells , 2014 .

[327]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[328]  W. Holzapfel Physics of solids under strong compression , 1996 .

[329]  S. Tolbert,et al.  High-pressure structural transformations in semiconductor nanocrystals. , 1995, Annual review of physical chemistry.